On generic properties of linear systems: An overview
Kybernetika, Tome 19 (1983) no. 6, pp. 467-474 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 93B05, 93B07, 93B25, 93Bxx, 93C05, 93C35, 93C99, 93D15
@article{KYB_1983_19_6_a2,
     author = {Tcho\'n, Krzysztof},
     title = {On generic properties of linear systems: {An} overview},
     journal = {Kybernetika},
     pages = {467--474},
     year = {1983},
     volume = {19},
     number = {6},
     mrnumber = {734833},
     zbl = {0546.93020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1983_19_6_a2/}
}
TY  - JOUR
AU  - Tchoń, Krzysztof
TI  - On generic properties of linear systems: An overview
JO  - Kybernetika
PY  - 1983
SP  - 467
EP  - 474
VL  - 19
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_1983_19_6_a2/
LA  - en
ID  - KYB_1983_19_6_a2
ER  - 
%0 Journal Article
%A Tchoń, Krzysztof
%T On generic properties of linear systems: An overview
%J Kybernetika
%D 1983
%P 467-474
%V 19
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_1983_19_6_a2/
%G en
%F KYB_1983_19_6_a2
Tchoń, Krzysztof. On generic properties of linear systems: An overview. Kybernetika, Tome 19 (1983) no. 6, pp. 467-474. http://geodesic.mathdoc.fr/item/KYB_1983_19_6_a2/

[1] R. W. Brockett: The geometry of the set of controllable linear systems. Res. Rep. Aut. Contr. Lab., Nagoya University 24 (1977), 1 - 7.

[2] R. W. Brockett, M. D. Mesarović: The reproducibility of multivariable systems. J. Math. Anal. Appl. 11 (1965), 548-563. | MR

[3] P. Brunovský: A classification of linear controllable systems. Kybernetika 6 (1970), 3, 173-187. | MR

[4] L. E. Dickson: Theory of Numbers. Vol. II. Chelsea, New York 1971.

[5] G. H. Hardy, S. Ramanujan: Asymptotic formulae in combinatory analysis. Proc. London Math. Soc. 17 (1918), 75-115. | MR

[6] R. Hermann, C. Martin: Algebro-Geometric and Lie-Theoretic Techniques in Systems Theory. Part A. Math. Sci. Press, Brookline 1977. | MR | Zbl

[7] R. E. Kalman: Algebraic geometric description of the class of linear systems of constant dimension. Proc. 8th Annual Princeton Conf. on Inform. Sci. and Systems, Princeton 1974.

[8] A. W. Olbrot: Genericity and non-genericity of properties of mathematical models. Arch. Automat. Telemech. 5 (1980), 4, 473-481 (in Polish). | MR

[9] J. Palis, Jr., W. de Melo: Geometric Theory of Dynamical Systems. Springer-Verlag, Berlin 1982. | MR | Zbl

[10] M. K. Sain, J. L. Massey: Invertibility of linear time-invariant systems. IEEE Trans. Automat. Control AC-15 (1969), 141-149. | MR

[11] K. Tchoń: On some operations preserving generic properties of systems. Internat. J. Gen. Systems 9 (1983), 89-94. | MR

[12] R. Thom: Structural Stability and Morphogenesis. Benjamin, New York 1975. | MR | Zbl

[13] F. W. Warner: Foundations of Differentiable Manifolds and Lie Groups. Scott-Foresman, Glenview 1971. | MR | Zbl

[14] J. C. Willems: Topological classification and structural stability of linear systems. J. Differential Equations 35 (1980), 306 - 318. | MR | Zbl

[15] J. C. Willems, W. H. Hesselink: Generic properties of the pole placement problem. Proc. 1978 IFAC Congress, Helsinki, Finland, 1725-1729.

[16] W. M. Wonham: Linear Multivariable Control: A Geometric Approach. Second Edition. Springer-Verlag, Berlin 1979. | MR | Zbl