Stochastic multivariable tracking: A polynomial equation approach
Kybernetika, Tome 19 (1983) no. 6, pp. 453-459 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 12D05, 12E12, 93B50, 93C35, 93E20
@article{KYB_1983_19_6_a0,
     author = {\v{S}ebek, Michael},
     title = {Stochastic multivariable tracking: {A} polynomial equation approach},
     journal = {Kybernetika},
     pages = {453--459},
     year = {1983},
     volume = {19},
     number = {6},
     mrnumber = {734831},
     zbl = {0531.93069},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1983_19_6_a0/}
}
TY  - JOUR
AU  - Šebek, Michael
TI  - Stochastic multivariable tracking: A polynomial equation approach
JO  - Kybernetika
PY  - 1983
SP  - 453
EP  - 459
VL  - 19
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_1983_19_6_a0/
LA  - en
ID  - KYB_1983_19_6_a0
ER  - 
%0 Journal Article
%A Šebek, Michael
%T Stochastic multivariable tracking: A polynomial equation approach
%J Kybernetika
%D 1983
%P 453-459
%V 19
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_1983_19_6_a0/
%G en
%F KYB_1983_19_6_a0
Šebek, Michael. Stochastic multivariable tracking: A polynomial equation approach. Kybernetika, Tome 19 (1983) no. 6, pp. 453-459. http://geodesic.mathdoc.fr/item/KYB_1983_19_6_a0/

[1] E. Emre: The polynomial equation $QQ_C + RP_C = \Phi$ with application to dynamic feedback. SIAM J. Control Optim. 18 (1980), 6, 611-620. | MR

[2] E. Emre, L. M. Silvermann: The equation $XR + QY = \Phi$: A characterization of solutions. SIAM J. Control Optim. 19 (1981), 1, 33-38. | MR

[3] M. J. Grimble: Design of stochastic optimal feedback control systems. Proc. IEEE 125 (1978), II, 1275-1284.

[4] T. Kailath: Linear Systems. Prentice-Hall, Englewood Cliffs, N. J. 1980. | MR | Zbl

[5] V. Kučera: Discrete Linear Control - The Polynomial Equation Approach. Wiley, Chichester 1979. | MR

[6] V. Kučera: Stochastic multivariable control: A polynomial equation approach. IEEE Trans. Automat. Control AC-25 (1980), 5, 913-919. | MR

[7] H. Kwakernaak, R. Sivan: Linear Optimal Control Systems. Wiley, New York 1972. | MR | Zbl

[8] M. Šebek: Polynomial design of stochastic tracking systems. IEEE Trans. Automat. Control AC-27 0982), 2, 468-470. | MR

[9] M. Šebek: Direct polynomial approach to discrete-time stochastic tracking. Problems Control Inform. Theory 12 (1983), 4, 293-300. | MR

[10] Z. Vostrý: New algorithm for polynomial spectral factorization with quadratic convergence. Kybernetika 12 (1976), 4, 248-259. | MR

[11] W. A. Wolovich: Linear Multivariable Systems. Springer-Verlag, New York 1974. | MR | Zbl

[12] D. C. Youla J. J. Bongiorno, H. A. Jabr: Modern Wiener-Hopf design of optimal controllers. II: The multivariable case. IEEE Trans. Automat. Control AC-21 (1976), 3, 319-338. | MR