@article{KYB_1983_19_6_a0,
author = {\v{S}ebek, Michael},
title = {Stochastic multivariable tracking: {A} polynomial equation approach},
journal = {Kybernetika},
pages = {453--459},
year = {1983},
volume = {19},
number = {6},
mrnumber = {734831},
zbl = {0531.93069},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1983_19_6_a0/}
}
Šebek, Michael. Stochastic multivariable tracking: A polynomial equation approach. Kybernetika, Tome 19 (1983) no. 6, pp. 453-459. http://geodesic.mathdoc.fr/item/KYB_1983_19_6_a0/
[1] E. Emre: The polynomial equation $QQ_C + RP_C = \Phi$ with application to dynamic feedback. SIAM J. Control Optim. 18 (1980), 6, 611-620. | MR
[2] E. Emre, L. M. Silvermann: The equation $XR + QY = \Phi$: A characterization of solutions. SIAM J. Control Optim. 19 (1981), 1, 33-38. | MR
[3] M. J. Grimble: Design of stochastic optimal feedback control systems. Proc. IEEE 125 (1978), II, 1275-1284.
[4] T. Kailath: Linear Systems. Prentice-Hall, Englewood Cliffs, N. J. 1980. | MR | Zbl
[5] V. Kučera: Discrete Linear Control - The Polynomial Equation Approach. Wiley, Chichester 1979. | MR
[6] V. Kučera: Stochastic multivariable control: A polynomial equation approach. IEEE Trans. Automat. Control AC-25 (1980), 5, 913-919. | MR
[7] H. Kwakernaak, R. Sivan: Linear Optimal Control Systems. Wiley, New York 1972. | MR | Zbl
[8] M. Šebek: Polynomial design of stochastic tracking systems. IEEE Trans. Automat. Control AC-27 0982), 2, 468-470. | MR
[9] M. Šebek: Direct polynomial approach to discrete-time stochastic tracking. Problems Control Inform. Theory 12 (1983), 4, 293-300. | MR
[10] Z. Vostrý: New algorithm for polynomial spectral factorization with quadratic convergence. Kybernetika 12 (1976), 4, 248-259. | MR
[11] W. A. Wolovich: Linear Multivariable Systems. Springer-Verlag, New York 1974. | MR | Zbl
[12] D. C. Youla J. J. Bongiorno, H. A. Jabr: Modern Wiener-Hopf design of optimal controllers. II: The multivariable case. IEEE Trans. Automat. Control AC-21 (1976), 3, 319-338. | MR