2-D polynomial equations
Kybernetika, Tome 19 (1983) no. 3, pp. 212-224 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 12E12, 13F20, 26C99, 93B25, 93B40, 93C35
@article{KYB_1983_19_3_a2,
     author = {\v{S}ebek, Michael},
     title = {2-D polynomial equations},
     journal = {Kybernetika},
     pages = {212--224},
     year = {1983},
     volume = {19},
     number = {3},
     mrnumber = {716650},
     zbl = {0515.93036},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1983_19_3_a2/}
}
TY  - JOUR
AU  - Šebek, Michael
TI  - 2-D polynomial equations
JO  - Kybernetika
PY  - 1983
SP  - 212
EP  - 224
VL  - 19
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_1983_19_3_a2/
LA  - en
ID  - KYB_1983_19_3_a2
ER  - 
%0 Journal Article
%A Šebek, Michael
%T 2-D polynomial equations
%J Kybernetika
%D 1983
%P 212-224
%V 19
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_1983_19_3_a2/
%G en
%F KYB_1983_19_3_a2
Šebek, Michael. 2-D polynomial equations. Kybernetika, Tome 19 (1983) no. 3, pp. 212-224. http://geodesic.mathdoc.fr/item/KYB_1983_19_3_a2/

[1] E. Bertini: Zum Fundamentalsatz aus der Theorie der algebraischen Funktionen. Math. Ann. 34 (1889), 447-449. | MR

[2] N. K. Bose: Multidimensional Systems: Theory and Applications. IEEE Press, New York 1979.

[3] R. Eising: 2-D Systems - An Algebraic Approach. Ph. D. Dissertation, Eindhoven University of Technology, Eindhoven 1979. | MR | Zbl

[4] E. Emre: The polynomial equation $QQ_c + RP_c = \emptyset$ with application to dynamic feedback. SIAM J. Control Optim. 18 (1980), 6, 611-620. | MR

[5] E. Emre, P. P. Khargonekar: Regulation of split linear systems over rings: coefficient-assignment and observers. IEEE Trans. Automat. Control AC-27 (1982), 1, 104-113. | MR | Zbl

[6] T. Kailath: Linear Systems. Prentice-Hall, Englewood Cliffs 1980. | MR | Zbl

[7] E. W. Kamen: A note on the representation of lumped-distributed networks, delay-differential systems and 2-D systems. IEEE Trans. Circuits and Systems CAS-27 (1980), 5, 430-432.

[8] E. W. Kamen: Linear systems with comensurate time delays: stability and stabilization independent of delay. IEEE Trans. Automat. Control AC-27 (1982), 2, 367-375. | MR

[9] V. Kučera: Discrete Linear Control: The Polynomial Equation Approach. Wiley, Chichester 1979. | MR

[10] A. S. Morse: Ring models for delay-differential systems. Automatica 12 (1976), 5, 529-531. | MR | Zbl

[11] M. Noether: Über einen Satz aus der Theorie der algebraischen Funktionen. Math. Ann. 6 (1873), 351-359.

[12] A. W. Olbrot, S. H. Żak: Controllability and observability problems for linear functional-differential systems. Foundations of Control Engineering 5 (1980), 2, 79 - 89. | MR

[13] P. N. Paraskevopoulos: Feedback design techniques for linear multivariable 2-D systems. In: Analysis and Optimization of Systems (A. Bensoussan and J. L. Lions, eds.), Springer-Verlag, Berlin-Heidelberg-New York 1980.

[14] Special issue on multidimensional systems. Proc. IEEE 65 (1977), 6. | Zbl

[15] M. Šebek: 2-D Exact model matching. IEEE Trans. Automat. Control AC-28 (1983), 2, 215-217.

[16] L. N. Volgin: The Fundamentals of the Theory of Controlling Machines. (in Russian). Soviet Radio, Moscow 1962.

[17] B. L. van der Waerden: Modern Algebra. 4th ed. (2 volumes). Frederic Ungar Publishing Co., New York 1964.

[18] W. A. Wolovich: Linear Multivariable Systems. Springer-Verlag, New York-Heidelberg-Berlin 1974. | MR | Zbl