@article{KYB_1982_18_5_a4,
author = {Soukup, V\'aclav},
title = {Additional signals in linear discrete-time control systems. {I.} {Additional} control signal},
journal = {Kybernetika},
pages = {415--439},
year = {1982},
volume = {18},
number = {5},
mrnumber = {686522},
zbl = {0507.93050},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1982_18_5_a4/}
}
Soukup, Václav. Additional signals in linear discrete-time control systems. I. Additional control signal. Kybernetika, Tome 18 (1982) no. 5, pp. 415-439. http://geodesic.mathdoc.fr/item/KYB_1982_18_5_a4/
[1] V. Kučera: Algebraic Theory of Discrete-Time Linear Control. Academia, Praha 1978. In Czech.
[2] V. Kučera: Discrete Linear Control - The Polynomial Equation Approach. Wiley, Chichester 1979. | MR
[3] V. Strejc M. Šalamon Z. Kotek M. Balda: Principles of Automatic Control Theory. SNTL, Praha 1958. In Czech.
[4] G. Bleisteiner W. von Mangold: Handbuch der Regelungstechnik. Springer-Veriag, Berlin-Göttingen-Heidelberg 1961.
[5] W. Oppelt: Kleines Handbuch technischer Regelvorgänge. 4. Ersch., Verlag Chemie GmbH, Weinheim - Bergstr. 1964.
[6] S. Kubík Z. Kotek M. Šalamon: Control Theory I, II. SNTL - Alfa, Praha 1968, 1969. In Czech.
[7] G. F. Zajcev V. K. Steklov: Combined Control Systems. Technika, Kiev 1978. In Russian.
[8] K. Reinisch: Analyse und Synthese kontinuierlicher Steuerungssysteme. VEB Verlag Technik, Berlin 1979.
[9] E. Samal: Verbesserung der Regelgüte durch Verwendung von Hilfsregelgrössen, Störgrössenbeeinflussung oder Reihenschaltung mehrerer Regler. Regelungstechnik 5 (1957), 192-198.
[10] C. Kessler: Ein Beitrag zur Theorie mehrschleifiger Regelungen. Regelungstechnik 8 (1960), 261-266. | Zbl
[11] K. Havlíček: Multiloop Discrete-Time Control Systems I. Dipl. Eng. Thesis, ČVUT, Praha 1980. In Czech.
[12] M. Lukeš: Multiloop Discrete-Time Control Systems II. Dipl. Eng. Thesis, ČVUT, Praha 1980. In Czech.
[13] V. Kučera: Closed-loop stability of discrete linear single-variable systems. Kybernetika 10 (1974), 2, 146-171. | MR
[14] V. Kučera: Algebraic theory of discrete optimal control for multivariable systems. Kybernetika 10-12, (1974-76), 1-240. Published in installments. | MR