@article{KYB_1982_18_5_a0,
author = {\v{S}ujan, \v{S}tefan},
title = {A local structure of stationary perfectly noiseless codes between stationary non-ergodic sources. {I.} {General} considerations},
journal = {Kybernetika},
pages = {361--375},
year = {1982},
volume = {18},
number = {5},
mrnumber = {686518},
zbl = {0504.94021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1982_18_5_a0/}
}
TY - JOUR AU - Šujan, Štefan TI - A local structure of stationary perfectly noiseless codes between stationary non-ergodic sources. I. General considerations JO - Kybernetika PY - 1982 SP - 361 EP - 375 VL - 18 IS - 5 UR - http://geodesic.mathdoc.fr/item/KYB_1982_18_5_a0/ LA - en ID - KYB_1982_18_5_a0 ER -
Šujan, Štefan. A local structure of stationary perfectly noiseless codes between stationary non-ergodic sources. I. General considerations. Kybernetika, Tome 18 (1982) no. 5, pp. 361-375. http://geodesic.mathdoc.fr/item/KYB_1982_18_5_a0/
[1] P. Billingsley: Ergodic Theory and Information. Wiley, New York 1965. | MR | Zbl
[2] R. Bowen: Equilibrium States and the ErgodicTheory of Anosov Diffeomorphisms. (Lecture Notes in Mathematics 470.) Springer - Verlag, Berlin-Heidelberg-New York 1975.
[3] M. Denker: Finite generators for ergodic, measure-preserving transformations. Z. Wahrsch. verw. Gebiete 29 (1974), 45-55. | MR
[4] M. Denker, Ch. Grillenberger, and K. Sigmund: Ergodic Theory on Compact Spaces. (Lecture Notes in Mathematics 527.) Springer - Verlag, Berlin -Heidelberg-New York 1976. | MR
[5] M. Denker, M. Keane: Almost topological dynamical systems. Israel J. Math. 34 (1979), 139-160. | MR | Zbl
[6] P. R. Halmos: Measure Theory. D. Van Nostrand, Princeton, N. J. 1950. | MR | Zbl
[7] M. Keane, M. Smorodinsky: Bernoulli schemes of the same entropy are finitarily isomorphic. Ann. of Math. 109 (1979), 387-406. | MR | Zbl
[8] J. C. Kieffer: Zero-error stationary coding over stationary channels. Z. Wahrsch. verw. Gebiete 56 (1981), 113-126. | MR | Zbl
[9] J. C. Kieffer, M. Rahe: Selecting universal partitions in ergodic theory. Ann. Probab. 9 (1981), 705-709. | MR | Zbl
[10] W. Krieger: On entropy and generators of measure-preservirg transformations. Trans. Amer. Math. Soc. 149 (1970), 453-464, Erratum, ibid. 168 (1972), 519. | MR
[11] D. S. Ornstein: Bernoulli shifts with the same entropy are isomorphic. Adv. in Math. 4 (1970), 337-352. | MR | Zbl
[12] D. S. Ornstein: Ergodic Theory, Randomness, and Dynamical Systems. Yale Univ. Press, New Haven and London 1974. | MR | Zbl
[13] J. C. Oxtoby: Ergodic sets. Bull. Amer. Math. Soc. 55 (1952), 116-136. | MR | Zbl
[14] W. Parry: Entropy and Generators in Ergodic Theory. W. A. Benjamin, New York -Amsterdam 1969. | MR | Zbl
[15] V. A. Rohlin: On the basic concepts of measure theory. (in Russian). Matem. Sborn. 25 (67) (1949), 107-150.
[16] P. C. Shields: Stationary coding of processes. IEEE Trans. Inform. Theory IT-25 (1979), 293-291. | MR | Zbl
[17] M. Smorodinsky: Ergodic Theory, Entropy. (Lecture Notes in Mathematics 214.) Springer -Verlag, Berlin-Heidelberg-New York 1971. | MR | Zbl
[18] K. Winkelbauer: On the asymptotic rate of non-ergodic information sources. Kybernetika 6 (1970), 127-148. | MR | Zbl
[19] K. Winkelbauer: On the existence of finite generators for invertible measure-preserving transformations. Comment. Math. Univ. Carolinae 18 (1977), 789-812. | MR | Zbl