The energy dissipation, the error probability and the time of duration a logical operation
Kybernetika, Tome 18 (1982) no. 4, pp. 345-355 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 68M99
@article{KYB_1982_18_4_a8,
     author = {Marvan, Milan},
     title = {The energy dissipation, the error probability and the time of duration a logical operation},
     journal = {Kybernetika},
     pages = {345--355},
     year = {1982},
     volume = {18},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1982_18_4_a8/}
}
TY  - JOUR
AU  - Marvan, Milan
TI  - The energy dissipation, the error probability and the time of duration a logical operation
JO  - Kybernetika
PY  - 1982
SP  - 345
EP  - 355
VL  - 18
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_1982_18_4_a8/
LA  - en
ID  - KYB_1982_18_4_a8
ER  - 
%0 Journal Article
%A Marvan, Milan
%T The energy dissipation, the error probability and the time of duration a logical operation
%J Kybernetika
%D 1982
%P 345-355
%V 18
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_1982_18_4_a8/
%G en
%F KYB_1982_18_4_a8
Marvan, Milan. The energy dissipation, the error probability and the time of duration a logical operation. Kybernetika, Tome 18 (1982) no. 4, pp. 345-355. http://geodesic.mathdoc.fr/item/KYB_1982_18_4_a8/

[1] L. Brillouin: Science and Information Theory. Academic Press, New York 1963. | MR

[2] R. Landauer: Irreversibility and heat generation in computing process. I.B.M.J.Res. Develop. 1 (1961), 183-196. | MR

[3] R. W. Keys R. Landauer: Minimal energy dissipation in logic. I.B.M. J. Res. Develop. 14 (1970), 152-157.

[4] R. Landauer J. W. F. Woo: Minimal energy dissipation and maximal error for computational process. J. Appl. Phys. 42 (1971), 2301-2308.

[5] R. W. Keys: Physical limits in digital electronics. Proceedings of the IEEE 63 (1975), 740-767.

[6] J. D. Bekenstein: Energy cost of information transfer. Phys. Rev. Letters 46 (1981), 623 - 627. | MR

[6a] J. D. Bekenstein: Universal upper bound on the entropy-to-energy ratio for bounded systems. Phys. Rev. D., 23, No. 2 (15 January 1981), 287-298. | MR

[7] M. S. Neyman: Telecomunications and Radio Engineering 21 (1966), 68. | Zbl