@article{KYB_1982_18_2_a2,
author = {Demel, Ji\v{r}{\'\i}},
title = {Fast algorithms for finding a subdirect decomposition and interesting congruences of finite algebras},
journal = {Kybernetika},
pages = {121--130},
year = {1982},
volume = {18},
number = {2},
mrnumber = {679784},
zbl = {0486.08003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1982_18_2_a2/}
}
Demel, Jiří. Fast algorithms for finding a subdirect decomposition and interesting congruences of finite algebras. Kybernetika, Tome 18 (1982) no. 2, pp. 121-130. http://geodesic.mathdoc.fr/item/KYB_1982_18_2_a2/
[1] A. V. Aho J. E. Hopcroft J. D. Ullman: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading, Massachusetts 1974. | MR
[2] G. Birkhoff: Subdirect unions in universal algebra. Bull. Amer. Math. Soc. 50 (1944), 764-768. | MR | Zbl
[3] M. Demlová J. Demel V. Koubek: On subdirectly irreducible automata. RAIRO Inform. Theor. 15 (1981), 23-46. | MR
[4] M. Demlová J. Demel V. Koubek: Several algorithms for finite algebras. In: Fundamentals of Computation Theory 1979 (L. Budach, ed.), Akademie-Verlag, Berlin 1979, 99-104. | MR
[5] M. Demlová J. Demel V. Koubek: Algorithms constructing minimal objects in algebras. (to appear).
[6] G. Grätzer: Universal Algebra. D. Van Nostrand Company, Princeton, N.J. 1968. | MR
[7] J. Hartmanis R. E. Stearns: Algebraic Structure Theory of Sequential Machines. Prentice-Hall Inc., Englewood Cliffs, N.J. 1966. | MR
[8] J. E. Hopcroft: An n log n algorithm for minimizing states in a finite automaton. In: Theory of Machines and Computations (Z. Kohavi, A. Paz, eds.), Academic Press, New York 1971, 189-196. | MR
[9] J. E. Hopcroft R. M. Karp: An Algorithm for Testing the Equivalence of Finite Automata. TR-71-114. Dept. of Computer Science, Cornell University, Ithaca, N.Y. 1971.
[10] R. E. Tarjan: Efficiency of a good but not linear disjoint set union algorithm. J. Assoc. Comput. Mach. 22 (1975), 215-225. | MR
[11] R. E. Tarjan: Reference machines require non-linear time to maintain disjoint sets. Proc. 9th Annual ACM Symposium on Theory of Computing, Boulder, Colorado 1977, 18-29. | MR