Bang-bang control of a second-order non-linear stable plant with second-order nonlinearity
Kybernetika, Tome 18 (1982) no. 1, pp. 66-71 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 93B03, 93B05, 93C10, 93C15
@article{KYB_1982_18_1_a5,
     author = {Vakilzadeh, I. and Keshavarz, A. A.},
     title = {Bang-bang control of a second-order non-linear stable plant with second-order nonlinearity},
     journal = {Kybernetika},
     pages = {66--71},
     year = {1982},
     volume = {18},
     number = {1},
     zbl = {0487.93030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1982_18_1_a5/}
}
TY  - JOUR
AU  - Vakilzadeh, I.
AU  - Keshavarz, A. A.
TI  - Bang-bang control of a second-order non-linear stable plant with second-order nonlinearity
JO  - Kybernetika
PY  - 1982
SP  - 66
EP  - 71
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_1982_18_1_a5/
LA  - en
ID  - KYB_1982_18_1_a5
ER  - 
%0 Journal Article
%A Vakilzadeh, I.
%A Keshavarz, A. A.
%T Bang-bang control of a second-order non-linear stable plant with second-order nonlinearity
%J Kybernetika
%D 1982
%P 66-71
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_1982_18_1_a5/
%G en
%F KYB_1982_18_1_a5
Vakilzadeh, I.; Keshavarz, A. A. Bang-bang control of a second-order non-linear stable plant with second-order nonlinearity. Kybernetika, Tome 18 (1982) no. 1, pp. 66-71. http://geodesic.mathdoc.fr/item/KYB_1982_18_1_a5/

[1] M. Athans P. L. Falb: Optimal Control. McGraw-Hill, New York 1966. | MR

[2] I. Vakilzadeh: The general class of admissible input for an Nth-order relay-controlled system. Iranian J. Sci. and Technology I (1972), 4, 323-338.

[3] I. Vakilzadeh: Analysis of a relay-controlled plant with one negative real pole of order two. J. Franklin Inst. 300 (1975), 5 and 6, 329-334.

[4] I. Vakilzadeh: Bang-bang control of a second-order unstable system. Internat. J. Control 20 (1974), 1, 49-56. | Zbl

[5] I. Vakilzadeh: Bang-bang control of a plant with one positive and one negative real pole. J. Optim. Theory Appl. 24 (1978), 2, 315-324. | MR

[6] A. A. Keshavarz: Bang-Bang Control of Some Nonlinear Systems. M. S. Thesis, Pahlavi University, Shiraz, Iran 1977.

[7] I. Vakilzadeh A. A. Keshavarz: Bang-bang control of a second-order non-linear unstable plant with second-order nonlinearity. SIAM J. Control Optim. (submitted).

[8] I. Vakilzadeh A. A. Keshavarz: Bang-bang control of a second-order non-linear stable plant with third-order nonlinearity. J. Optim. Theory Appl. (submitted).

[9] I. Vakilzadeh A. A. Keshavarz: Bang-bang control of a second-order non-linear unstable plant with third-order nonlinearity. Internat. J. Control 34 (1981), 3, 457-463. | MR