Continuity and quantization of channels with infinite alphabets
Kybernetika, Tome 17 (1981) no. 6, pp. 465-478 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 94A17, 94A24, 94A34, 94A40
@article{KYB_1981_17_6_a0,
     author = {\v{S}ujan, \v{S}tefan},
     title = {Continuity and quantization of channels with infinite alphabets},
     journal = {Kybernetika},
     pages = {465--478},
     year = {1981},
     volume = {17},
     number = {6},
     mrnumber = {674062},
     zbl = {0479.94012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1981_17_6_a0/}
}
TY  - JOUR
AU  - Šujan, Štefan
TI  - Continuity and quantization of channels with infinite alphabets
JO  - Kybernetika
PY  - 1981
SP  - 465
EP  - 478
VL  - 17
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_1981_17_6_a0/
LA  - en
ID  - KYB_1981_17_6_a0
ER  - 
%0 Journal Article
%A Šujan, Štefan
%T Continuity and quantization of channels with infinite alphabets
%J Kybernetika
%D 1981
%P 465-478
%V 17
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_1981_17_6_a0/
%G en
%F KYB_1981_17_6_a0
Šujan, Štefan. Continuity and quantization of channels with infinite alphabets. Kybernetika, Tome 17 (1981) no. 6, pp. 465-478. http://geodesic.mathdoc.fr/item/KYB_1981_17_6_a0/

[1] K. Winkelbauer: On the coding theorem for decomposable channels I, II. Kybernetika 7 (1971), 109-123, 230-255. | MR

[2] J. C. Kieffer: A general formula for the capacity of a stationary nonanticipatory channel. Inform. and Control 26 (1974), 381-391. | MR

[3] R. M. Gray D. S. Ornstein: Block coding for discrete stationary d-continuous noisy channels. IEEE Trans. Inform. Theory 25 (1979), 292-306. | MR

[4] J. Wolfowitz: Coding Theorems of Information Theory. 2nd ed. Springer-Verlag, Berlin - Gottingen -New York 1964. | MR | Zbl

[5] J. C. Kieffer: Block coding for a stationary channel satisfying a weak continuity condition. (to appear).

[6] R. M. Gray J. C. Kieffer: Mutual information rate, distortion and quantization in metric spaces. IEEE Trans. Inform. Theory 26 (1980), 412-422. | MR

[7] Š. Šujan: Channels with additive asymptotically mean stationary noise. Kybernetika 17 (1981), 1, 1-15. | MR

[8] P. Billingsley: Convergence of Probability Measures. J. Wiley, New York-London-Sydney-Toronto 1968. | MR | Zbl

[9] J. C. Kieffer: On the transmission of Bernoulli sources over stationary channels. Ann. Prob. 8 (1980), 942-961. | MR | Zbl

[10] Š. Šujan: A generalized coding problem for discrete information sources. Supplement. Kybernetika 13 (1977), 95 pp. | MR

[11] P. Billingsley: Ergodic Theory and Information. J. Wiley, New York 1965. | MR | Zbl

[12] R. L. Dobrushin: A general formulation of the basic Shannon theorem of information theory. (in Russian). Uspehi mat. nauk 14 (1959), 3-104. | MR

[13] K. Winkelbauer: On the asymptotic rate of non-ergodic information sources. Kybernetika 6 (1970), 2, 127-148. | MR | Zbl

[14] R. M. Gray L. D. Davisson: Source coding without the ergodic assumption. IEEE Trans. Inform. Theory 20 (1974), 502-516. | MR

[15] Š. Šujan: Block transmissibility and quantization. (submitted).

[16] F. Topsøe: Preservation of weak convergence under mappings. Ann. Math. Statist. 38 (1967), 1661-1665. | MR

[17] Š. Šujan: On the capacity of asymptotically mean stationary channels. Kybernetika 17 (1981), 3, 222-233. | MR

[18] K. Jacobs: Über die Struktur der mittleren Entropie. Math. Z. 78 (1962), 33-43. | MR | Zbl

[19] J. C. Kieffer: Some universal noiseless multiterminal source coding theorems. Inform. and Control 46 (1980), 93-107. | MR | Zbl

[20] K. Winkelbauer: On discrete information sources. Trans. 3rd Prague Conf. Inform. Theory, NČSAV Prague 1964, 765-830. | MR | Zbl

[21] K. Winkelbauer: On the capactiy of decomposable channels. Trans. 6th Prague Conf. Inform. Theory, Academia, Prague 1973, 903-914. | MR

[22] R. M. Gray D. L. Neuhoff P. C. Shields: A generalization of Ornstein's d-distance with applications to information theory. Ann. Prob. 3 (1975), 315-328. | MR