@article{KYB_1981_17_3_a3,
author = {Ebanks, Bruce R.},
title = {A characterization of separable utility functions},
journal = {Kybernetika},
pages = {244--255},
year = {1981},
volume = {17},
number = {3},
mrnumber = {628212},
zbl = {0459.90005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1981_17_3_a3/}
}
Ebanks, Bruce R. A characterization of separable utility functions. Kybernetika, Tome 17 (1981) no. 3, pp. 244-255. http://geodesic.mathdoc.fr/item/KYB_1981_17_3_a3/
[1] J. Aczél Z. Daróczy: On Measures of Information and Their Characterizations. Academic Press, New York 1975. | MR
[2] M. J. Beckmann U. H. Funke: Product attraction, advertising, and sales: Towards a utility model of market behavior. Z. Oper. Res. 22 (1978), 1 - 11.
[3] B. R. Ebanks: Branching measures of information on strings. Canad. Math. Bull. 22 (1979), 4, 433-448. | MR | Zbl
[4] B. Jessen J. Karpf A. Thorup: Some functional equations in groups and rings. Math. Scand. 22 (1968), 257-265. | MR
[5] C. T. Ng: Representation for measures of information with the branching property. Inform. Contr. 25 (1974), 45-56. | MR | Zbl
[6] J. Aczél Z. Daróczy: A mixed theory of information. I: Symmetric, recursive and measurable entropies of randomized systems of events. Rev. Fr. Automat. Inform. Rech. Oper., Inform. Teor. 72 (1978), 149-155. | MR
[7] B. R. Ebanks: Symmetric, $\beta$-recursive inset entropies. (to appear).