A characterization of separable utility functions
Kybernetika, Tome 17 (1981) no. 3, pp. 244-255 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 90A10, 91B16, 94A15
@article{KYB_1981_17_3_a3,
     author = {Ebanks, Bruce R.},
     title = {A characterization of separable utility functions},
     journal = {Kybernetika},
     pages = {244--255},
     year = {1981},
     volume = {17},
     number = {3},
     mrnumber = {628212},
     zbl = {0459.90005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1981_17_3_a3/}
}
TY  - JOUR
AU  - Ebanks, Bruce R.
TI  - A characterization of separable utility functions
JO  - Kybernetika
PY  - 1981
SP  - 244
EP  - 255
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_1981_17_3_a3/
LA  - en
ID  - KYB_1981_17_3_a3
ER  - 
%0 Journal Article
%A Ebanks, Bruce R.
%T A characterization of separable utility functions
%J Kybernetika
%D 1981
%P 244-255
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_1981_17_3_a3/
%G en
%F KYB_1981_17_3_a3
Ebanks, Bruce R. A characterization of separable utility functions. Kybernetika, Tome 17 (1981) no. 3, pp. 244-255. http://geodesic.mathdoc.fr/item/KYB_1981_17_3_a3/

[1] J. Aczél Z. Daróczy: On Measures of Information and Their Characterizations. Academic Press, New York 1975. | MR

[2] M. J. Beckmann U. H. Funke: Product attraction, advertising, and sales: Towards a utility model of market behavior. Z. Oper. Res. 22 (1978), 1 - 11.

[3] B. R. Ebanks: Branching measures of information on strings. Canad. Math. Bull. 22 (1979), 4, 433-448. | MR | Zbl

[4] B. Jessen J. Karpf A. Thorup: Some functional equations in groups and rings. Math. Scand. 22 (1968), 257-265. | MR

[5] C. T. Ng: Representation for measures of information with the branching property. Inform. Contr. 25 (1974), 45-56. | MR | Zbl

[6] J. Aczél Z. Daróczy: A mixed theory of information. I: Symmetric, recursive and measurable entropies of randomized systems of events. Rev. Fr. Automat. Inform. Rech. Oper., Inform. Teor. 72 (1978), 149-155. | MR

[7] B. R. Ebanks: Symmetric, $\beta$-recursive inset entropies. (to appear).