Matrix equations arising in regulator problems
Kybernetika, Tome 17 (1981) no. 2, pp. 128-139 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 15A24, 15A99
@article{KYB_1981_17_2_a2,
     author = {\v{S}ebek, Michael and Ku\v{c}era, Vladim{\'\i}r},
     title = {Matrix equations arising in regulator problems},
     journal = {Kybernetika},
     pages = {128--139},
     year = {1981},
     volume = {17},
     number = {2},
     mrnumber = {624205},
     zbl = {0471.15006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1981_17_2_a2/}
}
TY  - JOUR
AU  - Šebek, Michael
AU  - Kučera, Vladimír
TI  - Matrix equations arising in regulator problems
JO  - Kybernetika
PY  - 1981
SP  - 128
EP  - 139
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_1981_17_2_a2/
LA  - en
ID  - KYB_1981_17_2_a2
ER  - 
%0 Journal Article
%A Šebek, Michael
%A Kučera, Vladimír
%T Matrix equations arising in regulator problems
%J Kybernetika
%D 1981
%P 128-139
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_1981_17_2_a2/
%G en
%F KYB_1981_17_2_a2
Šebek, Michael; Kučera, Vladimír. Matrix equations arising in regulator problems. Kybernetika, Tome 17 (1981) no. 2, pp. 128-139. http://geodesic.mathdoc.fr/item/KYB_1981_17_2_a2/

[1] S. Barnett: Matrices in Control Theory. Van Nostrand Reinhold, London 1971. | MR | Zbl

[2] F. R. Gantmakher: The Theory of Matrices. Chelsea, New York 1959.

[3] V. Kučera: Algebraic theory of discrete optimal control for multivariable systems. Kybernetika 10-12 (1974-76), 1-240. Published in installments. | MR

[4] V. Kučera: Algebraická teorie diskrétního lineárního řízení. Academia, Praha 1978.

[5] V. Kučera: Discrete Linear Control - The Polynomial Equation Approach. Wiley, Chichester 1979. | MR

[6] V. Kučera: Steady-state minimum-variance discrete control. Problems of Control and Information Theory 8 (1979), 2, 123-135. | MR

[7] V. Kučera M. Šebek: Linear optimal dynamic regulators. Problems of Control and Information Theory 70 (1981), 3. | MR

[8] C. C. MacDuffee: The Theory of Matrices. Chelsea, New York 1946.

[9] M. Newman: Integral Matrices. Academic, New York 1972. | MR | Zbl

[10] W. E. Roth: The equation AX - YB = C and AX - XB = C in matrices. Proc. Amer. Math. Soc. 3 (1952), 392-396. | MR