On the continuity of the minimal $\alpha$-entropy
Kybernetika, Tome 17 (1981) no. 1, pp. 32-44 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 62B10, 62F03, 62F99
@article{KYB_1981_17_1_a2,
     author = {V{\'\i}\v{s}ek, Jan \'Amos},
     title = {On the continuity of the minimal $\alpha$-entropy},
     journal = {Kybernetika},
     pages = {32--44},
     year = {1981},
     volume = {17},
     number = {1},
     mrnumber = {629347},
     zbl = {0458.62018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1981_17_1_a2/}
}
TY  - JOUR
AU  - Víšek, Jan Ámos
TI  - On the continuity of the minimal $\alpha$-entropy
JO  - Kybernetika
PY  - 1981
SP  - 32
EP  - 44
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_1981_17_1_a2/
LA  - en
ID  - KYB_1981_17_1_a2
ER  - 
%0 Journal Article
%A Víšek, Jan Ámos
%T On the continuity of the minimal $\alpha$-entropy
%J Kybernetika
%D 1981
%P 32-44
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_1981_17_1_a2/
%G en
%F KYB_1981_17_1_a2
Víšek, Jan Ámos. On the continuity of the minimal $\alpha$-entropy. Kybernetika, Tome 17 (1981) no. 1, pp. 32-44. http://geodesic.mathdoc.fr/item/KYB_1981_17_1_a2/

[1] H. Chernoff: A measure of asymptotic efficiency for tests of hypothesis based on the sum of observations. Ann. Math. Statist. 23 (1952), 493-507. | MR

[2] F. Hewitt K. Stromberg: Real and Abstract Analysis. Springer-Verlag, Berlin 1965.

[3] A. Perez: Generalization of Chernoff's result on the asymptotic discernibility of two random processes. Trans. of the 9-th European Meeting of Statisticians, Budapest 1972.

[4] S. Zacks: The Theory of Statistical Inference. John Wiley, New York 1971. | MR