Optimal designs for the estimation of polynomial functionals
Kybernetika, Tome 17 (1981) no. 1, pp. 16-31 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 46E30, 62K05
@article{KYB_1981_17_1_a1,
     author = {P\'azman, Andrej},
     title = {Optimal designs for the estimation of polynomial functionals},
     journal = {Kybernetika},
     pages = {16--31},
     year = {1981},
     volume = {17},
     number = {1},
     mrnumber = {629346},
     zbl = {0466.62067},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1981_17_1_a1/}
}
TY  - JOUR
AU  - Pázman, Andrej
TI  - Optimal designs for the estimation of polynomial functionals
JO  - Kybernetika
PY  - 1981
SP  - 16
EP  - 31
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_1981_17_1_a1/
LA  - en
ID  - KYB_1981_17_1_a1
ER  - 
%0 Journal Article
%A Pázman, Andrej
%T Optimal designs for the estimation of polynomial functionals
%J Kybernetika
%D 1981
%P 16-31
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_1981_17_1_a1/
%G en
%F KYB_1981_17_1_a1
Pázman, Andrej. Optimal designs for the estimation of polynomial functionals. Kybernetika, Tome 17 (1981) no. 1, pp. 16-31. http://geodesic.mathdoc.fr/item/KYB_1981_17_1_a1/

[1] Chien-Fu Wu H. P. Wynn: The convergence of general steplength algorithms for regular optimum design criteria. Ann. Statist. 6 (1978), 1273-1285. | MR

[2] V. V. Fedorov: Theory of Optimal Experiments. Academic Press, New York 1972. | MR

[3] J. Kiefer: General equivalence theory for optimal designs. Ann. Statist. 2 (1974), 849-879. | MR

[4] J. Neveu: Processus aléatoires gaussiens. Presses de l'Univ. Montreal, 1968. | MR | Zbl

[5] A. Pázman: A convergence theorem in the theory of D-optimum experimental designs. Ann. Statist. 2 (1974), 216-218. | MR

[6] A. Pázman: Plans d'expérience pour les estimations de fonctionnelles non-linéaires. Ann. Inst. H. Poincare XIIIB (1977), 259-267. | MR

[7] A. Pázman: Hilbert-space methods in experimental design. Kybernetika 14 (1978), 73-84. | MR

[8] A. Pázman: Singular experimental designs. (Standard and Hilbert-space approaches). Math. Operationsforsch. u. Statist. Ser. Statistics 11 (1980), 137-149. | MR