@article{KYB_1981_17_1_a0,
author = {\v{S}ujan, \v{S}tefan},
title = {Channels with additive asymptotically mean stationary noise},
journal = {Kybernetika},
pages = {1--15},
year = {1981},
volume = {17},
number = {1},
mrnumber = {629345},
zbl = {0455.94008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1981_17_1_a0/}
}
Šujan, Štefan. Channels with additive asymptotically mean stationary noise. Kybernetika, Tome 17 (1981) no. 1, pp. 1-15. http://geodesic.mathdoc.fr/item/KYB_1981_17_1_a0/
[1] R. J. Fontana R. M. Gray J. C. Kieffer: Asymptotically mean stationary channels. (1979 - preprint). | MR
[2] R. M. Gray J. C. Kieffer: Asymptotically mean stationary measures. (1979 -submitted to Ann. of Prob.). | MR
[3] R. M. Gray D. S. Ornstein: Block coding for discrete stationary d-continuous noisy channels. IEEE Trans. Inform. Theory 1T-25 (1979), 292-306. | MR
[4] K. Jacobs: Die Übertragung diskreter Informationen durch periodische und fastperiodische Kanäle. Math. Annalen 757 (1959), 125-135. | MR | Zbl
[5] J. C. Kieffer: A general formula for the capacity of stationary nonanticipatory channels. Inform. and Control 26 (1971), 381-391. | MR
[6] J. Nedoma: The capacity of a discrete channel. Trans. 1st Prague Conf. Inform. Theory etc., NČSAV, Prague 1957, 143-181. | MR | Zbl
[7] K. R. Parthasarathy: On the integral representation of the rate of transmission of a stationary channel. 111. J. Math. 2 (1961), 299-305. | MR | Zbl
[8] K. R. Parthasarathy: Effective entropy rate and transmission of information through channels with additive random noise. Sankhya A 25 (1963), 75-84. | MR | Zbl
[9] C. E. Shannon: A mathematical theory of communication. Bell. Syst. Techn. J. 27 (1948), 379-423, 623-656. | MR | Zbl
[10] Š. Šujan: On the integral representation of the entropy rate. Studia Sci. Math. Hung. 11 (1976), 25-36. | MR
[11] Š. Šujan: A generalized coding problem for discrete information sources. Supplement. Kybernetika 13 (1977), 95 pp. | MR
[12] Š. Šujan: Epsilon-rates, epsilon-quantiles, and group coding theorems for finitely additive information sources. Kybernetika 16 (1980), 105-119. | MR
[13] Š. Šujan: Existence of asymptotic rate for asymptotically mean stationary sources with countable alphabets. 3rd Czechoslovak-Soviet-Hungarian Seminar on Inform. Theory, Liblice 1980, 201-206.
[14] K. Winkelbauer: On the asymptotic rate of non-ergodic information sources. Kybernetika 6 (1970), 127-148. | MR | Zbl
[15] K. Winkelbauer: On the coding theorem for decomposable channels I, II. Kybernetika 7 (1971), 109-123, 230-255. | MR
[16] K. Winkelbauer: On the regularity condition for decomposable communication channels. Kybernetika 7 (1971), 314-327. | MR | Zbl
[17] K. Winkelbauer: On discrete channels decomposable into memoryless components. Kybernetika 5 (1972), 114-132. | MR | Zbl
[18] K. Winkelbauer: On the capacity of decomposable channels. Trans. 6th Prague Conf. Inform. Theory etc., Academia, Prague 1973, 903-914. | MR | Zbl
[19] K. Winkelbauer: Information channels with memoryless components. Trans. 7th Prague Conf. Inform. Theory etc., Academia, Prague 1978, 559-576. | MR | Zbl
[20] K. Winkelbauer: Non-smooth channels with additive random noise. Trans. 8th Prague Conf. Inform. Theory etc., Academia, Prague 1978, Vol. B, 365-381. | MR | Zbl
[21] K. Winkelbauer: Discrete communication channels decomposable into finite-memory components. In: Contributions to Statistics (Jaroslav Hájek Memorial Volume, J. Jurečková, ed.), Academia, Prague 1979, 277-306. | MR | Zbl
[22] J. Wolfowitz: Coding Theorems of Information Theory. 2nd edition. Springer-Verlag, Berlin-Gottingen-New York 1964. | MR | Zbl