@article{KYB_1980_16_6_a0,
author = {Outrata, Ji\v{r}{\'\i} V. and K\v{r}{\'\i}\v{z}, Otakar F.},
title = {An application of conjugate duality for numerical solution of continuous convex optimal control problems},
journal = {Kybernetika},
pages = {477--497},
year = {1980},
volume = {16},
number = {6},
mrnumber = {607289},
zbl = {0464.49027},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1980_16_6_a0/}
}
TY - JOUR AU - Outrata, Jiří V. AU - Kříž, Otakar F. TI - An application of conjugate duality for numerical solution of continuous convex optimal control problems JO - Kybernetika PY - 1980 SP - 477 EP - 497 VL - 16 IS - 6 UR - http://geodesic.mathdoc.fr/item/KYB_1980_16_6_a0/ LA - en ID - KYB_1980_16_6_a0 ER -
Outrata, Jiří V.; Kříž, Otakar F. An application of conjugate duality for numerical solution of continuous convex optimal control problems. Kybernetika, Tome 16 (1980) no. 6, pp. 477-497. http://geodesic.mathdoc.fr/item/KYB_1980_16_6_a0/
[1] E. Asplund R. T. Rockafellar: Gradients of convex functions. Trans. Amer. Math. Society 189, (1969), 443-467. | MR
[2] I. Ekeland R. Temam: Analyse Convexe et Problèmes Variationnels. Dunod, Paris 1974. | MR
[3] N. Eldin: A report on the convex feedback method with applications. Proc. 2nd IFAC/IFIP Symposium Optimization Methods (Applied Aspscts), Pergamon Press, Oxford 1979.
[4] T. Glad: Constrained Optimization Using Multiplier Methode with Applications to Control Problems. Lunds Tekniska Högskola Press, Lund 1976.
[5] W. Heins S. K. Mitter: Conjugate convex functions, duality and optimal control problems I. Information Sciences 2 (1970), 211-243. | MR
[6] C. Lemarechal: An Algorithm for minimizing convex functions. Information Processing 74, Proc. of ths IFIP Congress 1974. North Holland, Amsterdam. | MR | Zbl
[7] C. Lemarechal: Nondifferentiable optimization, subgradient and $\epsilon$-subgradient methods. Lecture Notes: Numerical Methods in Optimization and Opsrations Research. Springer-Verlag, Berlin 1975. | MR
[8] D. E. Luenbsrger: Optimization by Vector Space Methods. J. Wiley and Sons, N. Y. 1968.
[9] J. J. Moreau: Proximité et dualité dans un espace Hilbertien. Bull. Soc. Math. France 93 (1965), 273-299. | MR | Zbl
[10] J. V. Outrata: A multiplier method for convex optimal control problems. Proc. 2nd IFAC/IFIP Symposium Optimization Methods (Applied Aspects), Pergamon Press, Oxford 1979.
[11] J. V. Outrata: On the differentiability in dual optimal control problems. Math. Operationsforsch. Statist., Ser. Optimization 10 (1979), 527-540. | MR | Zbl
[12] R. T. Rockafellar: Integrals which are convex functionals. Pac. J. of Math. 24 (1968), 525-539. | MR | Zbl
[13] R. T. Rockafellar: Conjugate convex functions in optimal control and the calculus of variations. J. of Math. Anal, and Appl. 32 (1970), 174-222. | MR | Zbl
[14] R. T. Rockafellar: A dual approach to solving nonlinear programming problems by unconstrained optimization. Math. Programming 5 (1973), 354-373. | MR | Zbl
[15] R. T. Rockafellar: The multiplier method of Hestens and Powell applied to convex programming. J. Optimiz. Theory and Appl. 12 (1973), 555-562. | MR
[16] R. T. Rockafellar: Conjugate Duality and Optimization. SIAM/CBMS monograph series No 16, SIAM Publications, 1974. | MR | Zbl
[17] R. D. Rupp: A method for solving a quadratic optimal control problem. J. Optimiz. Theory and Appl. 9 (1972), 251-264. | MR
[18] R. D. Rupp: A nonlinear optimal control minimization technique. Trans. AMS 775 (1973), 357-381. | MR | Zbl
[19] T. Tanino H. Nakayama Y. Sawaragi: Multiplier functions and duality for non-linear programmes having a set constraint. Ing. J. Syst. Sci. 9 (1978), 467-481. | MR
[20] A. P. Wierzbicki S. Kurcyusz: Projection on a cone, penalty functionals and duality theory for problems with inequality constraints in Hilbert space. SIAM J. Contr. and Optimiz. 75 (1977), 25-56. | MR
[21] P. Wolfe: A method of conjugate subgradients for minimizing nondifferentiable functions. Math. Programming Study 3 (1975), 145-173. | MR | Zbl