@article{KYB_1980_16_5_a6,
author = {Vokurka, Karel},
title = {Power spectrum of the periodic group pulse process},
journal = {Kybernetika},
pages = {462--471},
year = {1980},
volume = {16},
number = {5},
mrnumber = {602271},
zbl = {0446.60024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1980_16_5_a6/}
}
Vokurka, Karel. Power spectrum of the periodic group pulse process. Kybernetika, Tome 16 (1980) no. 5, pp. 462-471. http://geodesic.mathdoc.fr/item/KYB_1980_16_5_a6/
[1] D. Middleton: On the Theory of Random Noise: Phenomenological Models I, II. J. Appl. Physics 22 (1951), 9, 1143-1163, also in D. Middleton: An Introduction to Statistical Communication Theory. McGraw-Hill, New York 1960. | Zbl
[2] W. J. Richter, Jr. T. J. Smits: Numerical Evaluation of Rice's Integral Representation of the Probability Density Function for Poisson Impulsive Noise. J. Acoust. Soc. Am. 56 (1974), 2, 481-496.
[3] H. Bittel L. Storm: Rauschen. Springer, Berlin 1971.
[4] P. Mazzetti: Study of Nonindependent Random Pulse Trains, with Application to the Barkhausen Noise. Nuovo Cimento 25 (1962), 6, 1322-1341.
[5] V. A. Akuličev V. V. Olševskij: Svjaz statističeskich charakteristik akustičeskoj kavitacii i kavitacionnovo šuma. Akustičeskij žurnal 14 (1968), 1, 30-36.
[6] K. Vokurka: On the Cavitation Noise Theory. The 5th Conf. of Czechoslovac Physicists, Košice 1977, p. 918.
[7] Ch. Heiden: Power Spectrum of Stochastic Pulse Sequences with Correlation between the Pulse Parameters. Physical Review 188 (1969), 1, 319-326.
[8] B. R. Levin: Nekotorye obobščenija v teorii impulsnych slučajnych procesov. Elektro-svjaz (1963), 2, 21-28, also in B. R. Levin: Teoretičeskie osnovy statističeskoj radiotechniki. Sovetskoe Radio, Moskva 1969.
[9] G. V. Konovalov E. M. Tarasenko: Impulsnye slučajnye procesy v elektrosvjazi. Svjaz, Moskva 1973.
[10] G. G. Macfarlane: On the Energy-Spectrum of an Almost Periodic Succession of Pulses. Proc. I.R.E. 57(1949), 1139-1143.
[11] J. L. Lawson G. E. Uhlenbeck: Treshold Signals. McGraw-Hill, New York 1950.
[12] S. O. Rice: Mathematical Analysis of Random Noise. Bell System Techn. J. 23 (1944), 3, 282-332. | MR | Zbl