@article{KYB_1980_16_3_a2,
author = {Lukavcov\'a, Milena},
title = {On computable real functions},
journal = {Kybernetika},
pages = {240--247},
year = {1980},
volume = {16},
number = {3},
mrnumber = {587571},
zbl = {0451.68040},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1980_16_3_a2/}
}
Lukavcová, Milena. On computable real functions. Kybernetika, Tome 16 (1980) no. 3, pp. 240-247. http://geodesic.mathdoc.fr/item/KYB_1980_16_3_a2/
[1] A. Grzegorczyk: On the definitions of computable real continuous functions. Fundamenta Mathematicae 44 (1957), 61-71. | MR | Zbl
[2] P. Hájek T. Havránek: Mechanizing hypothesis formation - mathematical foundations for a general theory. Springer-Verlag, Heidelberg 1978. | MR
[3] T. Havránek: The approximation problem in computational statistics. Mathematical Foundations of Computer Science (1975) (J. Bečvář, ed.). Lecture Notes in Computer Science 32. Springer-Verlag, Heidelberg, 258-265. | MR
[4] T. Havránek: Statistics and computability. Kybernetika 12 (1976), 5, 303-315. | MR
[5] M. Lukavcová: Theory of computability and statistics. Diploma work, 1977 (in Czech).
[6] M. Lukavcová: On computable statistics. RNDr. thesis, 1978 (in Czech).
[7] M. B. Pour, El J. Caldwell: On a simple definitions of computable functions of a real variable - with application to functions of a complex variable. Zeitschrift für math. Logik und Grundlagen d. Math. 21 (1975), 1-19. | MR
[8] D. S. Scott: Lattice theory, data types and semantics. In: Formal semantic of programming languages (R. Rustin, ed.). Prentice-Hall, Englewood Cliffs 1972, 65-107. | MR | Zbl
[9] I. M. Shamos: Geometry and statistics - problem at the interface. Algorithms and Complexity, New directions and recent results (J. F. Traub, ed.). Academic Press, New York 1976. | MR
[10] J. R. Shoenfield: Degrees of unsolvability. North-Holland, Amsterdam 1971. | MR | Zbl
[11] Tables of probability functions, Volume II. National Bureau of Standards, 1942.