Statistical theory of logical derivability
Kybernetika, Tome 16 (1980) no. 3, pp. 225-239
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{KYB_1980_16_3_a1,
author = {\v{S}indel\'a\v{r}, Jan},
title = {Statistical theory of logical derivability},
journal = {Kybernetika},
pages = {225--239},
year = {1980},
volume = {16},
number = {3},
mrnumber = {587570},
zbl = {0444.03008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1980_16_3_a1/}
}
Šindelář, Jan. Statistical theory of logical derivability. Kybernetika, Tome 16 (1980) no. 3, pp. 225-239. http://geodesic.mathdoc.fr/item/KYB_1980_16_3_a1/
[1] J. R. Schoenfield: Mathematical Logic. Addison-Wesley, 1967. | MR
[2] G. Getzen: Untersuchungen über das logische Schliessen I, II. Mathematische Zeitschrift 39 (1935), 176-210 (I), 404-431 (II). | MR
[3] I. Kramosil: A Method for Random Sampling of Well-Formed Formulas. Kybernetika 8 (1972), 2, 135-148. | MR | Zbl
[4] I. Kramosil: A Method for Statistical Testing of an at Random Sampled Formula. Kybernetika 9 (1973), 3, 162-173. | MR | Zbl
[5] J. Šindelář: Některé otázky statistické teorie dokazatelnosti. Research Report UTIA No.760, 1976.