Optimal control of stabilizable time-varying linear systems with time delay
Kybernetika, Tome 16 (1980) no. 2, pp. 183-197
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{KYB_1980_16_2_a6,
author = {Komorn{\'\i}k, Jozef},
title = {Optimal control of stabilizable time-varying linear systems with time delay},
journal = {Kybernetika},
pages = {183--197},
year = {1980},
volume = {16},
number = {2},
mrnumber = {575424},
zbl = {0434.49004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1980_16_2_a6/}
}
Komorník, Jozef. Optimal control of stabilizable time-varying linear systems with time delay. Kybernetika, Tome 16 (1980) no. 2, pp. 183-197. http://geodesic.mathdoc.fr/item/KYB_1980_16_2_a6/
[1] Y. Alekal P. Brunovsky H. Ch. Dong E. B. Lee: The Quadratic Problem for Systems with Time Delay. IEEE Trans. Autom. Control AC-16 (1971), 6, 673-687. | MR
[2] V. B. Kolmanovskij T. L. Majzenberg: Optimal'noje upravlenije stochastičeskimi sistemami s posledejstvijem. Avtomatika i telemechanika 34 (1973), 1, 47-60.
[3] V. Kučera: A Review of the Matrix Riccati Equation. Kybernetika 9 (1973), 1, 42-61. | MR
[4] A. A. Lindquist: Theorem on Duality Between Estimation and Control for Linear Stochastic Systems with Time Delay. Journal of Math. Anal. and Appl. 37 (1972), 2, 516-536. | MR | Zbl
[5] V. J. Zubov: Lekcii po teoriji upravlenija. Nauka, Moskva 1976.