The optimum sequential test of a finite number of hypotheses for statistically dependent observations
Kybernetika, Tome 16 (1980) no. 1, pp. 36-47
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{KYB_1980_16_1_a2,
author = {Cochlar, Ji\v{r}{\'\i}},
title = {The optimum sequential test of a finite number of hypotheses for statistically dependent observations},
journal = {Kybernetika},
pages = {36--47},
year = {1980},
volume = {16},
number = {1},
mrnumber = {575415},
zbl = {0434.62060},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1980_16_1_a2/}
}
Cochlar, Jiří. The optimum sequential test of a finite number of hypotheses for statistically dependent observations. Kybernetika, Tome 16 (1980) no. 1, pp. 36-47. http://geodesic.mathdoc.fr/item/KYB_1980_16_1_a2/
[1] J. Cochlar I. Vrana: On the Optimum Sequential Test of Two Hypotheses for Statistically Dependent Observations. Kybernetika 14 (1978), 1, 57-69. | MR
[2] J. Cochlar: Optimum Stopping Rules on the Sequence of Statistically Dependent Vectors. Kybernetika 16, (1980), 1, 13 - 35. | MR | Zbl
[3] Y. S. Chow H. Robbins: On Optimal Stopping Rules. Zeitschr. f. Wahrscheinlichkeitstheorie u. verw. Geb. 2 (1963/64), 1, 33-49. | MR
[4] R. T. Rockafellar: Convex Analysis. Princeton University Press, Princeton 1970. | MR | Zbl