The optimum sequential test of a finite number of hypotheses for statistically dependent observations
Kybernetika, Tome 16 (1980) no. 1, pp. 36-47 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 62C10, 62F15, 62L10, 62L99, 62M07
@article{KYB_1980_16_1_a2,
     author = {Cochlar, Ji\v{r}{\'\i}},
     title = {The optimum sequential test of a finite number of hypotheses for statistically dependent observations},
     journal = {Kybernetika},
     pages = {36--47},
     year = {1980},
     volume = {16},
     number = {1},
     mrnumber = {575415},
     zbl = {0434.62060},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1980_16_1_a2/}
}
TY  - JOUR
AU  - Cochlar, Jiří
TI  - The optimum sequential test of a finite number of hypotheses for statistically dependent observations
JO  - Kybernetika
PY  - 1980
SP  - 36
EP  - 47
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_1980_16_1_a2/
LA  - en
ID  - KYB_1980_16_1_a2
ER  - 
%0 Journal Article
%A Cochlar, Jiří
%T The optimum sequential test of a finite number of hypotheses for statistically dependent observations
%J Kybernetika
%D 1980
%P 36-47
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_1980_16_1_a2/
%G en
%F KYB_1980_16_1_a2
Cochlar, Jiří. The optimum sequential test of a finite number of hypotheses for statistically dependent observations. Kybernetika, Tome 16 (1980) no. 1, pp. 36-47. http://geodesic.mathdoc.fr/item/KYB_1980_16_1_a2/

[1] J. Cochlar I. Vrana: On the Optimum Sequential Test of Two Hypotheses for Statistically Dependent Observations. Kybernetika 14 (1978), 1, 57-69. | MR

[2] J. Cochlar: Optimum Stopping Rules on the Sequence of Statistically Dependent Vectors. Kybernetika 16, (1980), 1, 13 - 35. | MR | Zbl

[3] Y. S. Chow H. Robbins: On Optimal Stopping Rules. Zeitschr. f. Wahrscheinlichkeitstheorie u. verw. Geb. 2 (1963/64), 1, 33-49. | MR

[4] R. T. Rockafellar: Convex Analysis. Princeton University Press, Princeton 1970. | MR | Zbl