Optimum stopping rules on the sequence of statistically dependent vectors
Kybernetika, Tome 16 (1980) no. 1, pp. 13-35 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 60G40, 62L12, 62L15
@article{KYB_1980_16_1_a1,
     author = {Cochlar, Ji\v{r}{\'\i}},
     title = {Optimum stopping rules on the sequence of statistically dependent vectors},
     journal = {Kybernetika},
     pages = {13--35},
     year = {1980},
     volume = {16},
     number = {1},
     mrnumber = {575414},
     zbl = {0441.60044},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1980_16_1_a1/}
}
TY  - JOUR
AU  - Cochlar, Jiří
TI  - Optimum stopping rules on the sequence of statistically dependent vectors
JO  - Kybernetika
PY  - 1980
SP  - 13
EP  - 35
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_1980_16_1_a1/
LA  - en
ID  - KYB_1980_16_1_a1
ER  - 
%0 Journal Article
%A Cochlar, Jiří
%T Optimum stopping rules on the sequence of statistically dependent vectors
%J Kybernetika
%D 1980
%P 13-35
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_1980_16_1_a1/
%G en
%F KYB_1980_16_1_a1
Cochlar, Jiří. Optimum stopping rules on the sequence of statistically dependent vectors. Kybernetika, Tome 16 (1980) no. 1, pp. 13-35. http://geodesic.mathdoc.fr/item/KYB_1980_16_1_a1/

[1] J. Neveu: Bases mathématiques du calcul des probabilités. Masson et Cie, Paris 1964. | MR | Zbl

[2] Y. S. Chow H. Robbins: On optimal stopping rules. Zeitschr. fur Wahrscheinlichkeitstheorie u. verw. Geb. 2 (1963/64), 1, 33-49. | MR

[3] G. W. Haggstrom: Optimal stopping and experimental design. Ann. of Math. Stat. 37 (1966), 1, 7-29. | MR | Zbl

[4] A. H. Ширяев: Статистический почледовательный анализ. Издание второе. Hayкa, Mocквa 1976. | Zbl

[5] E. Б. Дынкин: Основания теории марковских процессов. ФИЗМАТГИЗ, Mocквa 1959. | Zbl

[6] J. Cochlar: Formulace problému sekvenční detekce radiolokačních cílů v korelovaném šumu. Res. Rep. III-1-4/4-1, ČVUT FEL, Praha 1976.