Optimum stopping rules on the sequence of statistically dependent vectors
Kybernetika, Tome 16 (1980) no. 1, pp. 13-35
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{KYB_1980_16_1_a1,
author = {Cochlar, Ji\v{r}{\'\i}},
title = {Optimum stopping rules on the sequence of statistically dependent vectors},
journal = {Kybernetika},
pages = {13--35},
year = {1980},
volume = {16},
number = {1},
mrnumber = {575414},
zbl = {0441.60044},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1980_16_1_a1/}
}
Cochlar, Jiří. Optimum stopping rules on the sequence of statistically dependent vectors. Kybernetika, Tome 16 (1980) no. 1, pp. 13-35. http://geodesic.mathdoc.fr/item/KYB_1980_16_1_a1/
[1] J. Neveu: Bases mathématiques du calcul des probabilités. Masson et Cie, Paris 1964. | MR | Zbl
[2] Y. S. Chow H. Robbins: On optimal stopping rules. Zeitschr. fur Wahrscheinlichkeitstheorie u. verw. Geb. 2 (1963/64), 1, 33-49. | MR
[3] G. W. Haggstrom: Optimal stopping and experimental design. Ann. of Math. Stat. 37 (1966), 1, 7-29. | MR | Zbl
[4] A. H. Ширяев: Статистический почледовательный анализ. Издание второе. Hayкa, Mocквa 1976. | Zbl
[5] E. Б. Дынкин: Основания теории марковских процессов. ФИЗМАТГИЗ, Mocквa 1959. | Zbl
[6] J. Cochlar: Formulace problému sekvenční detekce radiolokačních cílů v korelovaném šumu. Res. Rep. III-1-4/4-1, ČVUT FEL, Praha 1976.