On the pseudoinverse of a sum of symmetric matrices with applications to estimation
Kybernetika, Tome 15 (1979) no. 5, pp. 341-348 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 15A09, 65F20, 94A05
@article{KYB_1979_15_5_a0,
     author = {Kovanic, Pavel},
     title = {On the pseudoinverse of a sum of symmetric matrices with applications to estimation},
     journal = {Kybernetika},
     pages = {341--348},
     year = {1979},
     volume = {15},
     number = {5},
     mrnumber = {554017},
     zbl = {0419.15004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1979_15_5_a0/}
}
TY  - JOUR
AU  - Kovanic, Pavel
TI  - On the pseudoinverse of a sum of symmetric matrices with applications to estimation
JO  - Kybernetika
PY  - 1979
SP  - 341
EP  - 348
VL  - 15
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_1979_15_5_a0/
LA  - en
ID  - KYB_1979_15_5_a0
ER  - 
%0 Journal Article
%A Kovanic, Pavel
%T On the pseudoinverse of a sum of symmetric matrices with applications to estimation
%J Kybernetika
%D 1979
%P 341-348
%V 15
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_1979_15_5_a0/
%G en
%F KYB_1979_15_5_a0
Kovanic, Pavel. On the pseudoinverse of a sum of symmetric matrices with applications to estimation. Kybernetika, Tome 15 (1979) no. 5, pp. 341-348. http://geodesic.mathdoc.fr/item/KYB_1979_15_5_a0/

[1] T. O. Lewis P. L. Odell: A generalization of the Gauss-Markov theorem. Amer. Stat. Ass. Journal (Dec. 1966), 1063-1066. | MR

[2] P. Kovanic: Minimum penalty estimate. Kybernetika 8 (1972), 5, 367-383. | MR | Zbl

[3] P. Kovanic: Generalized linear estimate of functions of random matrix arguments. Kybernetika 10 (1974), 4. 303-316. | MR | Zbl

[4] G. Zysking: On canonical forms, non-negative covariance matiices and best and simple least squares linear estimators in linear models. Ann. Math. Stat. 38 (1966), 1092-1108. | MR

[5] C. R. Hallum T. O. Lewis T. L. Boullion: Estimation in the general linear model with a positive semidefinite covariance matrix. Communications in statistics 1 (2), (1973) 157-166. | MR

[6] R. M. Pringle A. A. Rayner: Generalized inverse matrices with applications to statistics. Griffin, London 1971. | MR