On the numerical solution of implicit two-point boundary-value problems
Kybernetika, Tome 15 (1979) no. 3, pp. 222-230 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34B15, 49M05, 65L10, 90C90
@article{KYB_1979_15_3_a4,
     author = {Dole\v{z}al, Jaroslav and Fidler, Ji\v{r}{\'\i}},
     title = {On the numerical solution of implicit two-point boundary-value problems},
     journal = {Kybernetika},
     pages = {222--230},
     year = {1979},
     volume = {15},
     number = {3},
     zbl = {0404.65049},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1979_15_3_a4/}
}
TY  - JOUR
AU  - Doležal, Jaroslav
AU  - Fidler, Jiří
TI  - On the numerical solution of implicit two-point boundary-value problems
JO  - Kybernetika
PY  - 1979
SP  - 222
EP  - 230
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_1979_15_3_a4/
LA  - en
ID  - KYB_1979_15_3_a4
ER  - 
%0 Journal Article
%A Doležal, Jaroslav
%A Fidler, Jiří
%T On the numerical solution of implicit two-point boundary-value problems
%J Kybernetika
%D 1979
%P 222-230
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_1979_15_3_a4/
%G en
%F KYB_1979_15_3_a4
Doležal, Jaroslav; Fidler, Jiří. On the numerical solution of implicit two-point boundary-value problems. Kybernetika, Tome 15 (1979) no. 3, pp. 222-230. http://geodesic.mathdoc.fr/item/KYB_1979_15_3_a4/

[1] A. Miele R. R. Iyer: General technique for solving nonlinear, two-point boundary-value problems via the method of particular solutions. J. Optimization Theory Appl. 5 (1970), 5, 382-399. | MR

[2] A. Miele R. R. Iyer: Modified quasilinearization method for solving nonlinear, two-point boundary-value problems. J. Math. Anal. Appl. 36 (1971), 3, 674-692. | MR

[3] A. Miele S. Naqui A. V. Levy R. R. Iyer: Numerical solution of nonlinear equations and nonlinear, two-point boundary-value problems. In "Advances in Control Systems: Theory and Applications", Vol. 8, C. T. Leondes (ed.), Academic Press, New York 1971, 189-215.

[4] S. M. Roberts J. S. Shipman: On the Miele-Iyer modified quasilinearization method. J. Optimization Theory Appl. 14 (1974), 4, 381-391. | MR

[5] J. Fidler: The application of the modified quasilinearization method for the solution of continuous time boundary-value problems. Research Report No. 819. Institute of Information Theory and Automation, Prague 1977. In Czech.

[6] J. Doležal: On the modified quasilinearization method for discrete two-point boundary-value problems. Research Report No. 788, Institute of Information Theory and Automation, Prague 1977.

[7] J. Doležal: On a certain type of discrete two-point boundary-value problems arising in discrete optimal control. EQUADIFF 4 Conference, Prague, August 22-26, 1977. See also: Kybernetika 15 (1979), 3, 215-221. | MR

[8] J. Doležal J. Fidler: To the problem of numerical solution of implicit two-point boundary-value problems. Research Report No. 857, Institute of Information Theory and Automation, Prague 1978. In Czech.

[9] J. Doležal: Modified quasilinearization method for the solution of implicit, nonlinear, two-point boundary-value problems for systems of difference equations. The 5th Symposium on Algorithms ALGORITMY' 79, High Tatras, April 23-27, 1979. In Czech.

[10] M. R. Hestenes: Calculus of Variations and Optimal Control Theory. Wiley, New York 1966. | MR | Zbl

[11] D. G. B. Edelen: Differential procedures for systems of implicit relations and implicitly coupled nonlinear boundary-value problems. In "Numerical Methods for Differential Systems: Recent Development in Algorithm, Software, and Applications", L. Lapidus, W. E. Schiesser (eds.), Academic Press, New York 1976, 85-95. See also: In "Mathematical Models and Numerical Methods", Banach Center Publications Vol. 3, A. N. Tichonov et al. (eds.), PWN-Polish Scientific Publishers, Warszawa 1978, 289-296. | MR

[12] S. M. Roberts J. S. Shipman: Two-Point Boundary Value Problems: Shooting Methods. American Elsevier, New York 1972. | MR

[13] E. Polak: Computational Methods in Optimization: Unified Approach. Academic Press, New York 1971. | MR