Generalization of sum representation functional equations. II: Generalized directed divergence
Kybernetika, Tome 15 (1979) no. 1, pp. 28-39 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 39B40, 39B99, 94A17
@article{KYB_1979_15_1_a2,
     author = {Kannappan, PL. and Rathie, P. N.},
     title = {Generalization of sum representation functional equations. {II:} {Generalized} directed divergence},
     journal = {Kybernetika},
     pages = {28--39},
     year = {1979},
     volume = {15},
     number = {1},
     mrnumber = {529889},
     zbl = {0468.39007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1979_15_1_a2/}
}
TY  - JOUR
AU  - Kannappan, PL.
AU  - Rathie, P. N.
TI  - Generalization of sum representation functional equations. II: Generalized directed divergence
JO  - Kybernetika
PY  - 1979
SP  - 28
EP  - 39
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_1979_15_1_a2/
LA  - en
ID  - KYB_1979_15_1_a2
ER  - 
%0 Journal Article
%A Kannappan, PL.
%A Rathie, P. N.
%T Generalization of sum representation functional equations. II: Generalized directed divergence
%J Kybernetika
%D 1979
%P 28-39
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_1979_15_1_a2/
%G en
%F KYB_1979_15_1_a2
Kannappan, PL.; Rathie, P. N. Generalization of sum representation functional equations. II: Generalized directed divergence. Kybernetika, Tome 15 (1979) no. 1, pp. 28-39. http://geodesic.mathdoc.fr/item/KYB_1979_15_1_a2/

[1] Z. Daróczy: On the measurable solution of a functional equation. Acta Math. Acad. Sci. Hung. 22 (1971), 11-24. | MR

[2] Pl. Kannappan: On a functional equation connected with generalized directed divergence. Aeq. Math. 11 (1974), 51-56. | MR | Zbl

[3] Pl. Kannappan P. N. Rathie: On the measurable solution of a functional equation in two variables. (1978). | MR

[4] Pl. Kannappan V. Sathyabhama: Generalization of sum representation functional equation - I. (1978). | MR

[5] C. T. Ng: On the measurable solutions of the functional equation $\sum\limits_{i=1}^2 \sum\limits_{j=1}^3 F_{i,j} (p_i q_j) = \sum\limits_{i=1}^2 G_i (p_i) + \sum\limits_{j=1}^3 H_j (q_j)$. Acta Math. Acad. Sci. Hung. 25 (1974), 249-254. | MR

[6] H. Theil: Economics and Information Theory. North-Holland, Amsterdam 1967.