@article{KYB_1978_14_3_a4,
author = {\v{S}tulajter, Franti\v{s}ek},
title = {Nonlinear estimators of polynomials in mean values of a {Gaussian} stochastic process},
journal = {Kybernetika},
pages = {206--220},
year = {1978},
volume = {14},
number = {3},
mrnumber = {506650},
zbl = {0386.62072},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1978_14_3_a4/}
}
Štulajter, František. Nonlinear estimators of polynomials in mean values of a Gaussian stochastic process. Kybernetika, Tome 14 (1978) no. 3, pp. 206-220. http://geodesic.mathdoc.fr/item/KYB_1978_14_3_a4/
[1] N. Aronszajn: Theory of Reproducing Kernels. Trans. Amer. Math. Soc.6S (1950), 337-404. | MR | Zbl
[2] D. L. Duttweiler T. Kailath: RKHS Approach to Detection and Estimation Problems - Part IV. Non Gaussian Detection. IEEE Trans. Inf. Th., IT-19 (1973), 19-28. | MR
[3] T. Kailath D. Duttweiler: An RKHS Approach to Detection and Estimation Problems - Part III. Generalized Innovations Representations and a Likelihood-Ratio Formula. IEEE Trans. Inf. Th., IT-18 (1972), 6, 730-745. | MR
[4] L. Duttweiler T. Kailath: RKHS Approach to Detection and Estimation Problems - Part V. Parameter Estimation. IEEE Trans. Inf. IT-19, (1973), 1, 29-37. | MR
[5] P. R. Halmos: Introduction to Hilbert space. Chelsea Publishing Company, New-York 1972.
[6] И. A. Ибрагимов Ю. A. Poзанов: Гауссовские случайные процессы. Hayкa, Mocквa 1970. | Zbl
[7] G. Kallianpur: The Role of RKHS in the Study of Gaussian Processes. In Advances in Probability, vol. 2, M. Dekker INC. New York 1970, 59-83. | MR
[8] E. Parzen: Statistical Inference on Time Series by Hilbert Space Methods. Technical report No 23, Stanford 1959. (Reprinted in the book E. Parzen: Time Series Analysis Papers. Holden-Day, San Francisco 1967.)
[9] E. Parzen: Statistical Inference on Time Series by RKHS Methods II. Proc. 12th Biennial Canadian Math. Congress, R. Pyke (Ed.), Providence, R. I.: Amer. Math. Soc. 1969, 1 - 37. | MR
[10] A. Pázman: Plans d'expérience pour les estimations de fonctionnelles non-linéaires. Annales de l'Institut H. Poincaré 13 (1977), No 3. | MR