On the numerical solution of optimal control problems with constraints
Kybernetika, Tome 14 (1978) no. 3, pp. 182-188 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 49D10, 49M05, 65K05
@article{KYB_1978_14_3_a2,
     author = {Dole\v{z}al, Jaroslav and Fidler, Ji\v{r}{\'\i}},
     title = {On the numerical solution of optimal control problems with constraints},
     journal = {Kybernetika},
     pages = {182--188},
     year = {1978},
     volume = {14},
     number = {3},
     mrnumber = {0519661},
     zbl = {0381.49010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1978_14_3_a2/}
}
TY  - JOUR
AU  - Doležal, Jaroslav
AU  - Fidler, Jiří
TI  - On the numerical solution of optimal control problems with constraints
JO  - Kybernetika
PY  - 1978
SP  - 182
EP  - 188
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_1978_14_3_a2/
LA  - en
ID  - KYB_1978_14_3_a2
ER  - 
%0 Journal Article
%A Doležal, Jaroslav
%A Fidler, Jiří
%T On the numerical solution of optimal control problems with constraints
%J Kybernetika
%D 1978
%P 182-188
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_1978_14_3_a2/
%G en
%F KYB_1978_14_3_a2
Doležal, Jaroslav; Fidler, Jiří. On the numerical solution of optimal control problems with constraints. Kybernetika, Tome 14 (1978) no. 3, pp. 182-188. http://geodesic.mathdoc.fr/item/KYB_1978_14_3_a2/

[1] A. Miele R. E. Pritchard J. N. Damoulakis: Sequential gradient-restoration algorithm for optimal control problems. J. Optimiz. Theory Applics. 4 (1970), 4, 235 - 282. | MR

[2] A. Miele J. N. Damoulakis J. R. Cloutier J. L. Tietze: Sequential gradiant-restoration algorithm for optimal control problems with nondifferential constraints. J. Optimiz. Theory Applics. 13 (1974), 2, 218-225. | MR

[3] V. H. Quintana E. J. Davison: Clipping-off gradient algorithms to compute optimal controls with constrained magnitude. Int. J. Control 20 (1974), 2, 243 - 255. | MR

[4] J. Doležal J. Fidler: Sequential gradient-restoration algorithm for optimal control problems: gradient-projection approach. Problems of Control and Information Theory 7 (1978), 4. (To appear.) | MR