Hilbert-space methods in experimental design
Kybernetika, Tome 14 (1978) no. 2, pp. 73-84 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 62K05, 62K99, 62M99
@article{KYB_1978_14_2_a0,
     author = {P\'azman, Andrej},
     title = {Hilbert-space methods in experimental design},
     journal = {Kybernetika},
     pages = {73--84},
     year = {1978},
     volume = {14},
     number = {2},
     mrnumber = {0478496},
     zbl = {0385.62052},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1978_14_2_a0/}
}
TY  - JOUR
AU  - Pázman, Andrej
TI  - Hilbert-space methods in experimental design
JO  - Kybernetika
PY  - 1978
SP  - 73
EP  - 84
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_1978_14_2_a0/
LA  - en
ID  - KYB_1978_14_2_a0
ER  - 
%0 Journal Article
%A Pázman, Andrej
%T Hilbert-space methods in experimental design
%J Kybernetika
%D 1978
%P 73-84
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_1978_14_2_a0/
%G en
%F KYB_1978_14_2_a0
Pázman, Andrej. Hilbert-space methods in experimental design. Kybernetika, Tome 14 (1978) no. 2, pp. 73-84. http://geodesic.mathdoc.fr/item/KYB_1978_14_2_a0/

[1] A. S. Atkinson V. V. Fedorov: The design of experiments for discriminating between two rival models. Biometrika 62 (1975), 57-69. | MR

[2] C. L. Atwood: Convergent design sequences for sufficiently regular optimality criteria. Ann. of Statist. 4 (1976), 1124-1138. | MR | Zbl

[3] O. Bunke: Model choice and parameter estimation in regression analysis. Math. Operationsforsch. u. Statist. 4 (1973), 407-423. | MR | Zbl

[4] G. Elfving: Optimum allocation in linear regression. Ann. Math. Statist. 23 (1952), 255 - 262. | MR | Zbl

[5] B. B. Федоров: Теория оптимального эксперимента. Hayкa, Mocквa 1971. | Zbl

[6] V. V. Fedorov A. Pázman: Design of experiments based on the measure of information. Print N° E 5 - 3247 of the Joint Institute for Nuclear Research, Dubna (USSR) 1967.

[7] J. Fellman: On the allocation of linear observations. Comentationes Physico-Mathematicae (Helsinki) 44, 27-78. | MR | Zbl

[8] P. R. Halmos: Introduction to Hilbert space. Chelsea Publ. C. New York 1957. | Zbl

[9] S. Karlin W. J. Studden: Optimal experimental designs. Ann. Math. Statist. 37 (1966), 783-815. | MR

[10] J. Kiefer W. J. Studden: Optimum designs for large degree polynomial regression. Ann. of Statist. 4 (1976), 113-123. | MR

[11] J. Kiefer J. Wolfowitz: Optimum design in regression problems. Ann. Math. Statist. 30 (1959), 271-294. | MR

[12] B. B. Налимов: Теория эксперимента. Hayкa, Mocквa 1971. | Zbl

[13] J. Neveu: Processus aléatoires gaussiens. Lab. de Calcul des Probabilités, Univ. Paris VI, 1974. | MR

[14] K. R. Parthasarathy: Probability measures on metric spaces. Academic Press, New York and London 1967. | MR | Zbl

[15] A. Pázman: The ordering of experimental designs. A. Hilbert space approach. Kybernetika (Praha) 10 (1974), 373-388. | MR

[16] A. Pázman: Optimum experimental designs with a lack of a priori information II. - Designs for the estimation of the whole response function. Kybernetika (Praha) 12 (1976), 7-14. | MR

[17] A. Pázman: Plans d'expérience pour les estimations des functionnelles non-linéaires. Ann. de l'Institut Henri Poincaré B 13 (1977), 259-267. | MR

[18] S. D. Silvey D. M. Titterington: A geometric approach to optimal design theory. Biometrica 60 (1973), 21-32. | MR

[19] C. H. Coколов: Непрерывное планирование регрессионных экспериментов. Teoрия вероятностей 8 (1963), 95-101, 318-324.

[20] M. Stone: Application of a measure of information to the design and comparison of regression experiments. Ann. Math. Statist. 30 (1959), 55 - 70. | MR | Zbl