On the optimum sequential test of two hypotheses for statistically dependent observations
Kybernetika, Tome 14 (1978) no. 1, pp. 57-69
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{KYB_1978_14_1_a5,
author = {Cochlar, Ji\v{r}{\'\i} and Vrana, Ivan},
title = {On the optimum sequential test of two hypotheses for statistically dependent observations},
journal = {Kybernetika},
pages = {57--69},
year = {1978},
volume = {14},
number = {1},
mrnumber = {0488544},
zbl = {0376.62056},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1978_14_1_a5/}
}
Cochlar, Jiří; Vrana, Ivan. On the optimum sequential test of two hypotheses for statistically dependent observations. Kybernetika, Tome 14 (1978) no. 1, pp. 57-69. http://geodesic.mathdoc.fr/item/KYB_1978_14_1_a5/
[1] A. Wald J. Wolfowitz: Optimum character of the sequential probability ratio test. Ann. of Math. Stát. 19 (1948), 3, 326-339. | MR
[2] Y. S. Chow H. Robbins: On optimal stopping rules. Zeitsch. für Wahrscheinlichkeitstheorie u. verw. Geb. 2 (1963/64), 1, 33-49. | MR
[3] J. Cochlar: Formulace problému sekvenční detekce radiolokačních cílů v korelovaném šumu. Res. rep. III-1-4/4, 1976, ČVUT - FEL Praha.
[4] J. Neveu: Bases mathématiques du calcul des probabilités. Masson et Cie, Paris 1964. | MR | Zbl
[5] M. H. DeGroot: Optimal statistical decisions. McGraw-Hill, New York 1970. | MR | Zbl
[6] J. Schmidtmayer: Maticový počet a jeho použití v elektrotechnice. SNTL, Praha 1954.