Optimum designs of experiments for uncorrelated observations on fields
Kybernetika, Tome 12 (1976) no. 4, pp. 223-247 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 62K05, 62K99, 62M99
@article{KYB_1976_12_4_a1,
     author = {P\'azman, Andrej},
     title = {Optimum designs of experiments for uncorrelated observations on fields},
     journal = {Kybernetika},
     pages = {223--247},
     year = {1976},
     volume = {12},
     number = {4},
     mrnumber = {0423702},
     zbl = {0339.62058},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1976_12_4_a1/}
}
TY  - JOUR
AU  - Pázman, Andrej
TI  - Optimum designs of experiments for uncorrelated observations on fields
JO  - Kybernetika
PY  - 1976
SP  - 223
EP  - 247
VL  - 12
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_1976_12_4_a1/
LA  - en
ID  - KYB_1976_12_4_a1
ER  - 
%0 Journal Article
%A Pázman, Andrej
%T Optimum designs of experiments for uncorrelated observations on fields
%J Kybernetika
%D 1976
%P 223-247
%V 12
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_1976_12_4_a1/
%G en
%F KYB_1976_12_4_a1
Pázman, Andrej. Optimum designs of experiments for uncorrelated observations on fields. Kybernetika, Tome 12 (1976) no. 4, pp. 223-247. http://geodesic.mathdoc.fr/item/KYB_1976_12_4_a1/

[1] N. Aronszajn: Theory of Reproducing Kernels. Trans. Amer. Math. Soc. 68 (1950), 337-404. | MR | Zbl

[2] C. L. Atwood: Convergent Design Sequences for Sufficiently Regular Optimality Criteria. (1975) Preprint of the University of California. | MR

[3] В. В. Федоров: Teopия оптимального эксперимента. Hayкa, Mocквa 1971.

[4] P. R. Halmos: Introduction to Hilbert Space. Second edition. Chelsa, New York, 1972.

[5] S. Karlin W. J. Studden: Optimal Experimental Designs. Ann. Math. Statist. 37 (1966), 783-815. | MR

[6] J. Neveu: Processus aleatoires gaussiens. (1974) Laboratoire de Calcul des Probability, Universite de Paris VI. | MR

[7] K. R. Parthasarathy: Probability Measures on Metric Spaces. Academic Press, New York and London, 1967. | MR | Zbl

[8] A. Pazman: The Ordering of Experimental Designs. A Hilbert Space Approach. Kybernetika, 10 (1974), 373-388. | MR | Zbl