Optimum experimental designs with a lack of a priori information. II. Designs for the estimation of the whole response function
Kybernetika, Tome 12 (1976) no. 1, pp. 7-14
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{KYB_1976_12_1_a1,
author = {P\'azman, Andrej},
title = {Optimum experimental designs with a lack of a priori information. {II.} {Designs} for the estimation of the whole response function},
journal = {Kybernetika},
pages = {7--14},
year = {1976},
volume = {12},
number = {1},
mrnumber = {0420987},
zbl = {0336.62074},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1976_12_1_a1/}
}
TY - JOUR AU - Pázman, Andrej TI - Optimum experimental designs with a lack of a priori information. II. Designs for the estimation of the whole response function JO - Kybernetika PY - 1976 SP - 7 EP - 14 VL - 12 IS - 1 UR - http://geodesic.mathdoc.fr/item/KYB_1976_12_1_a1/ LA - en ID - KYB_1976_12_1_a1 ER -
Pázman, Andrej. Optimum experimental designs with a lack of a priori information. II. Designs for the estimation of the whole response function. Kybernetika, Tome 12 (1976) no. 1, pp. 7-14. http://geodesic.mathdoc.fr/item/KYB_1976_12_1_a1/
[1] J. Kiefer J. Wolfowitz: Optimum Design in Regression Problems. Ann. Math. Statist. 30 (1959), 271-294. | MR
[2] A. Pázman: The Ordering of Experimental Designs. A Hilbert Space Approach. Kybernetika 70 (1974), 5, 373-388. | MR
[3] A. Pázman: Optimum Experimental Designs with a Lack of a priori Information I - Designs for the Estimation of a Finite-Dimensional Set of Functionals. Kybernetika 11 (1975), 5, 355-367. | MR