On the minimum time problem in linear discrete systems with the discrete set of admissible controls
Kybernetika, Tome 11 (1975) no. 5, pp. 368-374 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 49K99, 90C20, 93C55
@article{KYB_1975_11_5_a4,
     author = {Outrata, Ji\v{r}{\'\i} V.},
     title = {On the minimum time problem in linear discrete systems with the discrete set of admissible controls},
     journal = {Kybernetika},
     pages = {368--374},
     year = {1975},
     volume = {11},
     number = {5},
     mrnumber = {0456747},
     zbl = {0317.49027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1975_11_5_a4/}
}
TY  - JOUR
AU  - Outrata, Jiří V.
TI  - On the minimum time problem in linear discrete systems with the discrete set of admissible controls
JO  - Kybernetika
PY  - 1975
SP  - 368
EP  - 374
VL  - 11
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_1975_11_5_a4/
LA  - en
ID  - KYB_1975_11_5_a4
ER  - 
%0 Journal Article
%A Outrata, Jiří V.
%T On the minimum time problem in linear discrete systems with the discrete set of admissible controls
%J Kybernetika
%D 1975
%P 368-374
%V 11
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_1975_11_5_a4/
%G en
%F KYB_1975_11_5_a4
Outrata, Jiří V. On the minimum time problem in linear discrete systems with the discrete set of admissible controls. Kybernetika, Tome 11 (1975) no. 5, pp. 368-374. http://geodesic.mathdoc.fr/item/KYB_1975_11_5_a4/

[1] P. Wolfe: The Simplex Method for Quadratic Programming. Econometrica 27 (1959), 3, 382-398. | MR | Zbl

[2] M. D. Canon C. D. Cullum E. Polak: Theory of Optimal Control and Mathematical Programming. McGraw Hill, N. Y. 1970. | MR

[3] E. G. Gilbert: An iterative procedure for computing the minimum of a quadratic form on a convex set. SIAM J. Contr. 4 (1966), 1, 61-80. | MR | Zbl

[4] J. V. Outrata: Numerické přístupy k časově optimálnímu řízení diskrétních systémů. Research report ÚTIA ČSAV, 1974.

[5] A. I. Propoj: Elementy teorii optimalnych diskretnych processov. Nauka, Moskava 1973.

[6] H. P. Künzi W. Oettli: Integer Quadratic Programming. In: Recent Advances in Mathematical Programming. McGraw-Hill, N. Y. 1963. | MR