Optimum experimental designs with a lack of a priori information. I. Designs for the estimation of a finite-dimensional set of functionals
Kybernetika, Tome 11 (1975) no. 5, pp. 355-367
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{KYB_1975_11_5_a3,
author = {P\'azman, Andrej},
title = {Optimum experimental designs with a lack of a priori information. {I.} {Designs} for the estimation of a finite-dimensional set of functionals},
journal = {Kybernetika},
pages = {355--367},
year = {1975},
volume = {11},
number = {5},
mrnumber = {0420986},
zbl = {0319.62055},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1975_11_5_a3/}
}
TY - JOUR AU - Pázman, Andrej TI - Optimum experimental designs with a lack of a priori information. I. Designs for the estimation of a finite-dimensional set of functionals JO - Kybernetika PY - 1975 SP - 355 EP - 367 VL - 11 IS - 5 UR - http://geodesic.mathdoc.fr/item/KYB_1975_11_5_a3/ LA - en ID - KYB_1975_11_5_a3 ER -
%0 Journal Article %A Pázman, Andrej %T Optimum experimental designs with a lack of a priori information. I. Designs for the estimation of a finite-dimensional set of functionals %J Kybernetika %D 1975 %P 355-367 %V 11 %N 5 %U http://geodesic.mathdoc.fr/item/KYB_1975_11_5_a3/ %G en %F KYB_1975_11_5_a3
Pázman, Andrej. Optimum experimental designs with a lack of a priori information. I. Designs for the estimation of a finite-dimensional set of functionals. Kybernetika, Tome 11 (1975) no. 5, pp. 355-367. http://geodesic.mathdoc.fr/item/KYB_1975_11_5_a3/
[1] P. R. Halmos: Measure Theory. Van Nostrand, New York 1950. | MR | Zbl
[2] K. R. Parthasarathy: Probability Measures on Metric Spaces. Academie Press, New York and London 1967. | MR | Zbl
[3] A. Pázman: The Ordering of Experimental Designs. A Hilbert Space Approach. Kybernetika 10 (1974), 5, 373-388. | MR
[4] A. Pázman: Optimum Experimental Designs with a Lack of a Priori Informations II - Designs for the Estimation of the Whole Response Function. Kybernetika.