Optimum experimental designs with a lack of a priori information. I. Designs for the estimation of a finite-dimensional set of functionals
Kybernetika, Tome 11 (1975) no. 5, pp. 355-367 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 62J05, 62K05
@article{KYB_1975_11_5_a3,
     author = {P\'azman, Andrej},
     title = {Optimum experimental designs with a lack of a priori information. {I.} {Designs} for the estimation of a finite-dimensional set of functionals},
     journal = {Kybernetika},
     pages = {355--367},
     year = {1975},
     volume = {11},
     number = {5},
     mrnumber = {0420986},
     zbl = {0319.62055},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1975_11_5_a3/}
}
TY  - JOUR
AU  - Pázman, Andrej
TI  - Optimum experimental designs with a lack of a priori information. I. Designs for the estimation of a finite-dimensional set of functionals
JO  - Kybernetika
PY  - 1975
SP  - 355
EP  - 367
VL  - 11
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_1975_11_5_a3/
LA  - en
ID  - KYB_1975_11_5_a3
ER  - 
%0 Journal Article
%A Pázman, Andrej
%T Optimum experimental designs with a lack of a priori information. I. Designs for the estimation of a finite-dimensional set of functionals
%J Kybernetika
%D 1975
%P 355-367
%V 11
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_1975_11_5_a3/
%G en
%F KYB_1975_11_5_a3
Pázman, Andrej. Optimum experimental designs with a lack of a priori information. I. Designs for the estimation of a finite-dimensional set of functionals. Kybernetika, Tome 11 (1975) no. 5, pp. 355-367. http://geodesic.mathdoc.fr/item/KYB_1975_11_5_a3/

[1] P. R. Halmos: Measure Theory. Van Nostrand, New York 1950. | MR | Zbl

[2] K. R. Parthasarathy: Probability Measures on Metric Spaces. Academie Press, New York and London 1967. | MR | Zbl

[3] A. Pázman: The Ordering of Experimental Designs. A Hilbert Space Approach. Kybernetika 10 (1974), 5, 373-388. | MR

[4] A. Pázman: Optimum Experimental Designs with a Lack of a Priori Informations II - Designs for the Estimation of the Whole Response Function. Kybernetika.