An approximative method for solving the non-linear optimal control problem
Kybernetika, Tome 11 (1975) no. 3, pp. 234-247 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 49M05, 49M15, 65K05, 93C10
@article{KYB_1975_11_3_a4,
     author = {Canh, Nguyen and Tuzar, Anton{\'\i}n},
     title = {An approximative method for solving the non-linear optimal control problem},
     journal = {Kybernetika},
     pages = {234--247},
     year = {1975},
     volume = {11},
     number = {3},
     zbl = {0333.49037},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1975_11_3_a4/}
}
TY  - JOUR
AU  - Canh, Nguyen
AU  - Tuzar, Antonín
TI  - An approximative method for solving the non-linear optimal control problem
JO  - Kybernetika
PY  - 1975
SP  - 234
EP  - 247
VL  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_1975_11_3_a4/
LA  - en
ID  - KYB_1975_11_3_a4
ER  - 
%0 Journal Article
%A Canh, Nguyen
%A Tuzar, Antonín
%T An approximative method for solving the non-linear optimal control problem
%J Kybernetika
%D 1975
%P 234-247
%V 11
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_1975_11_3_a4/
%G en
%F KYB_1975_11_3_a4
Canh, Nguyen; Tuzar, Antonín. An approximative method for solving the non-linear optimal control problem. Kybernetika, Tome 11 (1975) no. 3, pp. 234-247. http://geodesic.mathdoc.fr/item/KYB_1975_11_3_a4/

[1] N. Canh: A convergence theorem on the iterative solution of non-linear two-point boundary value systems. Kybernetika 10 (1974), 1, 49-60. | MR

[2] P. Kenneth G. E. Taylor: Solution of variational problems with bounded control variables by means of the Generalized Newton-Raphson method. Proceedings of the Symposium on Recent advances in optimization technique. J. Wiley, New York 1966, 471-488.

[3] G. M. Lance: Numerical methods for high speed computers. Illife and Sons, London 1960. | MR