Mathematical theory of free rhythm
Kybernetika, Tome 11 (1975) no. 3, pp. 223-233 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 68Q45
@article{KYB_1975_11_3_a3,
     author = {Kindler, Ev\v{z}en},
     title = {Mathematical theory of free rhythm},
     journal = {Kybernetika},
     pages = {223--233},
     year = {1975},
     volume = {11},
     number = {3},
     zbl = {0307.68052},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1975_11_3_a3/}
}
TY  - JOUR
AU  - Kindler, Evžen
TI  - Mathematical theory of free rhythm
JO  - Kybernetika
PY  - 1975
SP  - 223
EP  - 233
VL  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_1975_11_3_a3/
LA  - en
ID  - KYB_1975_11_3_a3
ER  - 
%0 Journal Article
%A Kindler, Evžen
%T Mathematical theory of free rhythm
%J Kybernetika
%D 1975
%P 223-233
%V 11
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_1975_11_3_a3/
%G en
%F KYB_1975_11_3_a3
Kindler, Evžen. Mathematical theory of free rhythm. Kybernetika, Tome 11 (1975) no. 3, pp. 223-233. http://geodesic.mathdoc.fr/item/KYB_1975_11_3_a3/

[1] G. Suñol: Text book of gregorian chant. (in English; also in French, German, Spanish and Italian). Desclée, Tournai 1930.

[2] P. Ferretti: Principii teoritici e pratici di Canto gregoriano. Rome 1933.

[3] A. Mocquereau: Le nombre musical grégorien ou rhythmique grégorienne. Tournai 1908 (Tom I), 1922 (Tom II).

[4] H. J. W. Tillyard: Handbook of the middle byzantine musical notation. Munksgaard, Copenhagen 1935.

[5] A. Salomaa: Formal languages. Academic Press, N. York-London 1973. | MR | Zbl

[6] Liber usualis missae et officii. Desclée, Tournai 1964.

[7] C. H. Lindsey S. G. van der Meulen: Informal introduction to ALGOL 68. North-Holland, Amsterdam-London 1971.