A note on the exponential stability of a matrix Riccati equation of stochastic control
Kybernetika, Tome 11 (1975) no. 3, pp. 218-222 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34D05, 93C15, 93E15, 93E20
@article{KYB_1975_11_3_a2,
     author = {Zabczyk, Jerzy},
     title = {A note on the exponential stability of a matrix {Riccati} equation of stochastic control},
     journal = {Kybernetika},
     pages = {218--222},
     year = {1975},
     volume = {11},
     number = {3},
     mrnumber = {0393693},
     zbl = {0311.93054},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1975_11_3_a2/}
}
TY  - JOUR
AU  - Zabczyk, Jerzy
TI  - A note on the exponential stability of a matrix Riccati equation of stochastic control
JO  - Kybernetika
PY  - 1975
SP  - 218
EP  - 222
VL  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_1975_11_3_a2/
LA  - en
ID  - KYB_1975_11_3_a2
ER  - 
%0 Journal Article
%A Zabczyk, Jerzy
%T A note on the exponential stability of a matrix Riccati equation of stochastic control
%J Kybernetika
%D 1975
%P 218-222
%V 11
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_1975_11_3_a2/
%G en
%F KYB_1975_11_3_a2
Zabczyk, Jerzy. A note on the exponential stability of a matrix Riccati equation of stochastic control. Kybernetika, Tome 11 (1975) no. 3, pp. 218-222. http://geodesic.mathdoc.fr/item/KYB_1975_11_3_a2/

[1] W. M. Wonham: On a matrix Riccati equation of stochastic control. SIAM J. Control 6 (1968), 681-697. | MR

[2] I. M. Rodriguez-Canabal: The geometry of the Riccati equation. Ph. D. dissertation, University of Southern California, June 1972.

[3] P. Hartman: Ordinary Differential Equations. John Wiley and Sons, New York 1964. | MR | Zbl

[4] J. Zabczyk: On stochastic control of discrete time systems in Hilbert space. SIAM J. Control (to appear). | MR

[5] M. A. Krasnosel'skii: Positive Solutions of Operator Equations. P. Noordhoff Ltd., Groningen 1964. | MR

[6] R. S. Bucy P. D. Joseph: Filtering for Stochastic Processes with Applications to Guidance. Interscience Publishers, New York - London 1968. | MR