The ordering of experimental designs. A Hilbert space approach
Kybernetika, Tome 10 (1974) no. 5, pp. 373-388 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 46Cxx, 60G99, 62K05, 62K99, 62M99
@article{KYB_1974_10_5_a0,
     author = {P\'azman, Andrej},
     title = {The ordering of experimental designs. {A} {Hilbert} space approach},
     journal = {Kybernetika},
     pages = {373--388},
     year = {1974},
     volume = {10},
     number = {5},
     mrnumber = {0381170},
     zbl = {0291.62105},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1974_10_5_a0/}
}
TY  - JOUR
AU  - Pázman, Andrej
TI  - The ordering of experimental designs. A Hilbert space approach
JO  - Kybernetika
PY  - 1974
SP  - 373
EP  - 388
VL  - 10
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_1974_10_5_a0/
LA  - en
ID  - KYB_1974_10_5_a0
ER  - 
%0 Journal Article
%A Pázman, Andrej
%T The ordering of experimental designs. A Hilbert space approach
%J Kybernetika
%D 1974
%P 373-388
%V 10
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_1974_10_5_a0/
%G en
%F KYB_1974_10_5_a0
Pázman, Andrej. The ordering of experimental designs. A Hilbert space approach. Kybernetika, Tome 10 (1974) no. 5, pp. 373-388. http://geodesic.mathdoc.fr/item/KYB_1974_10_5_a0/

[1] Aronszajn N.: Theory of Reproducing Kernels. Trans. Amer. Math. Soc. 68 (1950), 337-404. | MR | Zbl

[2] Atwood C. L.: Sequences Converging to D-optimal Designs of Experiments. Ann. of Statist. 1 (1973), 2, 342-352. | MR | Zbl

[3] Halmos P. R.: Introduction to Hilbert Space. Chelsea Publ. Comp., New York 1957. | Zbl

[4] Kiefer J., Wolfowitz J.: Optimum Designs in Regression Problems. Ann. Math. Statist. 30 (1959), 271-294. | MR | Zbl

[5] Kullback S.: Information Theory and Statistics. Wiley, New York 1959. | MR | Zbl

[6] Линник Ю. В.: Метод наименьших квадратов и основы математикостатистической теории обработки наблюдений. Москва 1962. | Zbl

[7] Parzen E.: Regression Analysis of Continuous Parameter Time Series. Fourth Berkeley Symp. on Math. Statist, 1961, 469-490. | MR | Zbl

[8] Pázman A., Serejová D.: Sekvenčné navrhovanie optimálnych experimentov. Report, Bratislava 1972.

[9] Pázman A.: Sequential Designs for Estimating s out of k Parameters. Acta metronomica 8 (1972), 4, Inst. for Measurement Theory, Bratislava. Also: A Convergence Theorem in the Theory of D-optimum Designs. Ann. of Statist. 2 (1974), 1, 216-218.

[10] Stone M.: Application of a Measure of Information to the Design and Comparison of Regression Experiments. Ann. Math. Statist. 30 (1959), 55-70. | MR | Zbl

[11] Wynn H. P.: Results in the Theory and Construction of D-optimum Experimental Designs. J. Roy. Stat. Soc. B 34 (1972), 133-147. | MR | Zbl