Data compression in discriminating stochastic processes
Kybernetika, Tome 10 (1974) no. 3, pp. 187-198 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 62B10, 62G10, 62M99, 94A05
@article{KYB_1974_10_3_a1,
     author = {Perez, Albert},
     title = {Data compression in discriminating stochastic processes},
     journal = {Kybernetika},
     pages = {187--198},
     year = {1974},
     volume = {10},
     number = {3},
     mrnumber = {0368237},
     zbl = {0286.62070},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1974_10_3_a1/}
}
TY  - JOUR
AU  - Perez, Albert
TI  - Data compression in discriminating stochastic processes
JO  - Kybernetika
PY  - 1974
SP  - 187
EP  - 198
VL  - 10
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_1974_10_3_a1/
LA  - en
ID  - KYB_1974_10_3_a1
ER  - 
%0 Journal Article
%A Perez, Albert
%T Data compression in discriminating stochastic processes
%J Kybernetika
%D 1974
%P 187-198
%V 10
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_1974_10_3_a1/
%G en
%F KYB_1974_10_3_a1
Perez, Albert. Data compression in discriminating stochastic processes. Kybernetika, Tome 10 (1974) no. 3, pp. 187-198. http://geodesic.mathdoc.fr/item/KYB_1974_10_3_a1/

[1] H. Chernoff: A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Statistics 23 (1952), 493-507. | MR | Zbl

[2] L. H. Koopmans: Asymptotic rate of discrimination for Markov processes. Ann. Math. Statistics 31, (1960), 982-994. | MR | Zbl

[3] A. Perez: Asymptotic discernibility of two stationary Markov chains. Paper presented at the Second International Symposium on Information Theory in USSR, Tsahkadsor, 1971.

[4] A. Perez: Generalization of the Chernoff's result on the asymptotic discernibility of two random processes. Paper presented at the 1972 European Meeting of Statisticians, Budapest.

[5] A. Perez: Extensions of Shannon-McMillan's limit theorem to more general stochastic processes. In: Trans. Third Prague Conference on Information Theory, Statistical Decision Functions, Random Processes 1962. Praha 1964, 545-574. | MR

[6] L. Baladová: Number of alternatives in reducing finite spaces and vector spaces. To appear in Kybernetika. | MR