A convergence theorem on the iterative solution of nonlinear two-point boundary-value systems
Kybernetika, Tome 10 (1974) no. 1, pp. 49-60 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34B15, 65J99, 65L10
@article{KYB_1974_10_1_a3,
     author = {Canh, Nguyen},
     title = {A convergence theorem on the iterative solution of nonlinear two-point boundary-value systems},
     journal = {Kybernetika},
     pages = {49--60},
     year = {1974},
     volume = {10},
     number = {1},
     mrnumber = {0400719},
     zbl = {0285.65052},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1974_10_1_a3/}
}
TY  - JOUR
AU  - Canh, Nguyen
TI  - A convergence theorem on the iterative solution of nonlinear two-point boundary-value systems
JO  - Kybernetika
PY  - 1974
SP  - 49
EP  - 60
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_1974_10_1_a3/
LA  - en
ID  - KYB_1974_10_1_a3
ER  - 
%0 Journal Article
%A Canh, Nguyen
%T A convergence theorem on the iterative solution of nonlinear two-point boundary-value systems
%J Kybernetika
%D 1974
%P 49-60
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_1974_10_1_a3/
%G en
%F KYB_1974_10_1_a3
Canh, Nguyen. A convergence theorem on the iterative solution of nonlinear two-point boundary-value systems. Kybernetika, Tome 10 (1974) no. 1, pp. 49-60. http://geodesic.mathdoc.fr/item/KYB_1974_10_1_a3/

[1] R. E. Bellman R. Kalaba: Quasilinearization and nonlinear boundary-value problems. The Rand Corporation - American Elsevier Publishing Company, New York 1965. | MR

[2] R. McGill P. Kenneth: A convergence theorem on the iterative solution of nonlinear two-point boundary-value systems. Presented on the IAF Congress, Paris, September 1963.

[3] Л. В. Канторович Г. П. Акилов: Функциональный анализ в нормированных пространствах. Физматгиз, Москва 1959. | Zbl