Can cybernetics contribute to the study of computer development?
Kybernetika, Tome 9 (1973) no. 6, pp. 475-482 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 00A30, 68U99
@article{KYB_1973_9_6_a4,
     author = {Kindler, Ev\v{z}en},
     title = {Can cybernetics contribute to the study of computer development?},
     journal = {Kybernetika},
     pages = {475--482},
     year = {1973},
     volume = {9},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1973_9_6_a4/}
}
TY  - JOUR
AU  - Kindler, Evžen
TI  - Can cybernetics contribute to the study of computer development?
JO  - Kybernetika
PY  - 1973
SP  - 475
EP  - 482
VL  - 9
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_1973_9_6_a4/
LA  - en
ID  - KYB_1973_9_6_a4
ER  - 
%0 Journal Article
%A Kindler, Evžen
%T Can cybernetics contribute to the study of computer development?
%J Kybernetika
%D 1973
%P 475-482
%V 9
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_1973_9_6_a4/
%G en
%F KYB_1973_9_6_a4
Kindler, Evžen. Can cybernetics contribute to the study of computer development?. Kybernetika, Tome 9 (1973) no. 6, pp. 475-482. http://geodesic.mathdoc.fr/item/KYB_1973_9_6_a4/

[1] A. A. Mарков: Теория алгорифмов. (Theory of algorithms). Труды математического института имени В. А. Стеклова, XL-II, Издателство Академии наук СССР, Москва-Ленинград 1954. | Zbl

[2] A. M. Turing: Computable numbers with an application to Entscheidungsproblem. Proc. London. Math. Soc. ser. 2., 42 (1936-7), 230-265. | MR

[3] C. E. Shannon: Universal Turing machine with two inner states. In: Automata studies. Princeton University Press, Princeton 1956. | MR

[4] M. D. Davis: Note on universal Turing machines. In: Automata studies. Princeton University Press, Princeton 1956. | MR

[5] R. Péter: Recursive Funktionen. Akademiai Kiadó, Budapest 1951.

[6] S. C. Kleene: Introduction to Metamathematics. D. Van Nostrand Comp., New York-Toronto 1952. | MR | Zbl

[7] S. C. Kleene: General recursive functions of natural numbers. Math. Ann. 112 (1936), 727-742. | MR | Zbl