@article{KYB_1973_9_5_a3,
author = {Nieminen, U. J.},
title = {The block plan problem. {A} graphtheoretic approach},
journal = {Kybernetika},
pages = {365--373},
year = {1973},
volume = {9},
number = {5},
mrnumber = {0351431},
zbl = {0264.90030},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1973_9_5_a3/}
}
Nieminen, U. J. The block plan problem. A graphtheoretic approach. Kybernetika, Tome 9 (1973) no. 5, pp. 365-373. http://geodesic.mathdoc.fr/item/KYB_1973_9_5_a3/
[1] C. Benzaken: Pseudo-treillis distributifs et applications III. Buletinul Institutului Politehnic din Iasi XIV (1968), 3-4, 25. | MR | Zbl
[2] C. Benzaken: Structures algebriques des cheminements: Pseudo-treillis, gerbiers carré nul. In: "Network and switching theory. A NATO advanced study institute" ed. by G Biorci, 1968, p. 40.
[3] R. Busacker T. Saaty: Finite graphs and networks: An Introduction with applications. McGraw-Hill, New York 1965. | MR
[4] W. R. Dunn, Jr. S. P. Chan: An algorithm for testing the planarity of a graph. IEEE Transactions on Circuit Theory CT-15 (1968), 166. | MR
[5] P. L. Hammer S. Rudeanu: Boolean methods in operations research and related areas. Springer-Verlag, Berlin - Heidelberg 1968. | MR
[6] S. MacLane: A combinatorial condition for planar graphs. Fundamenta Mathematica 28 (1937), 22. | Zbl
[7] J. J. Seppänen J. M. Moore: Facilities planning with graph theory. Management Science (Application) 17 (1970), B-242.