The block plan problem. A graphtheoretic approach
Kybernetika, Tome 9 (1973) no. 5, pp. 365-373 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 05C10, 90B99, 90C10, 90C35
@article{KYB_1973_9_5_a3,
     author = {Nieminen, U. J.},
     title = {The block plan problem. {A} graphtheoretic approach},
     journal = {Kybernetika},
     pages = {365--373},
     year = {1973},
     volume = {9},
     number = {5},
     mrnumber = {0351431},
     zbl = {0264.90030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1973_9_5_a3/}
}
TY  - JOUR
AU  - Nieminen, U. J.
TI  - The block plan problem. A graphtheoretic approach
JO  - Kybernetika
PY  - 1973
SP  - 365
EP  - 373
VL  - 9
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_1973_9_5_a3/
LA  - en
ID  - KYB_1973_9_5_a3
ER  - 
%0 Journal Article
%A Nieminen, U. J.
%T The block plan problem. A graphtheoretic approach
%J Kybernetika
%D 1973
%P 365-373
%V 9
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_1973_9_5_a3/
%G en
%F KYB_1973_9_5_a3
Nieminen, U. J. The block plan problem. A graphtheoretic approach. Kybernetika, Tome 9 (1973) no. 5, pp. 365-373. http://geodesic.mathdoc.fr/item/KYB_1973_9_5_a3/

[1] C. Benzaken: Pseudo-treillis distributifs et applications III. Buletinul Institutului Politehnic din Iasi XIV (1968), 3-4, 25. | MR | Zbl

[2] C. Benzaken: Structures algebriques des cheminements: Pseudo-treillis, gerbiers carré nul. In: "Network and switching theory. A NATO advanced study institute" ed. by G Biorci, 1968, p. 40.

[3] R. Busacker T. Saaty: Finite graphs and networks: An Introduction with applications. McGraw-Hill, New York 1965. | MR

[4] W. R. Dunn, Jr. S. P. Chan: An algorithm for testing the planarity of a graph. IEEE Transactions on Circuit Theory CT-15 (1968), 166. | MR

[5] P. L. Hammer S. Rudeanu: Boolean methods in operations research and related areas. Springer-Verlag, Berlin - Heidelberg 1968. | MR

[6] S. MacLane: A combinatorial condition for planar graphs. Fundamenta Mathematica 28 (1937), 22. | Zbl

[7] J. J. Seppänen J. M. Moore: Facilities planning with graph theory. Management Science (Application) 17 (1970), B-242.