On generalized credence functions
Kybernetika, Tome 9 (1973) no. 5, pp. 343-356 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 00A25, 02A05, 03A05, 03H99, 60A05, 68A45, 68T10
@article{KYB_1973_9_5_a0,
     author = {H\'ajek, Petr and Harmancov\'a, Dagmar},
     title = {On generalized credence functions},
     journal = {Kybernetika},
     pages = {343--356},
     year = {1973},
     volume = {9},
     number = {5},
     mrnumber = {0401414},
     zbl = {0279.02040},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1973_9_5_a0/}
}
TY  - JOUR
AU  - Hájek, Petr
AU  - Harmancová, Dagmar
TI  - On generalized credence functions
JO  - Kybernetika
PY  - 1973
SP  - 343
EP  - 356
VL  - 9
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_1973_9_5_a0/
LA  - en
ID  - KYB_1973_9_5_a0
ER  - 
%0 Journal Article
%A Hájek, Petr
%A Harmancová, Dagmar
%T On generalized credence functions
%J Kybernetika
%D 1973
%P 343-356
%V 9
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_1973_9_5_a0/
%G en
%F KYB_1973_9_5_a0
Hájek, Petr; Harmancová, Dagmar. On generalized credence functions. Kybernetika, Tome 9 (1973) no. 5, pp. 343-356. http://geodesic.mathdoc.fr/item/KYB_1973_9_5_a0/

[1] Carnap R.: The Aim of Inductive Logic. In: "Logic, Methodology and Philosophy of Science" (ed. by E. Nagel, P. Suppes, A. Tarski). Stanford (USA) 1962, p. 303. | Zbl

[2] Carnap R.: The Continuum of Inductive Methods. Chicago 1952. | MR | Zbl

[3] Kemeny J. G.: Carnap's Theory of Probability and Induction. In: "The Philosophy of R. Carnap", series The Library of Living Philosophers.

[4] Kelley J. L.: Measures on Boolean Algebras. Pacific Journal of Mathematics 9 (1959), 1165. | MR | Zbl

[5] Luxemburg W. A. J.: Two Applications of the Method of Construction by Ultrapower to Analysis. Bull. Amer. Mathemat. Soc. 68 (1962), 416. | MR

[6] Bell J. L., Slomson A. B.: Models and Ultraproducts. North-Holland Publ. Comp., 1969. | MR | Zbl

[7] Scott D.: Measurement Structures and Linear Inequalities. Journal of Mathemat. Psychology 1 (1964), 233. | Zbl

[8] Vopěnka P., Hájek P.: The Theory of Semisets. North-Holland Publ. Comp., Amsterdam and Academia, Prague 1972. | MR

[9] Hájek P.: On Semisets. In: "Logic Colloquium '69" (ed. by R. C. Gandy and C. M. E. Yates). North-Holland Publ. Comp., Amsterdam 1971. | MR