A comparison of three optimality criteria for observation channels
Kybernetika, Tome 9 (1973) no. 3, pp. 174-186 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 62F05, 94A15
@article{KYB_1973_9_3_a2,
     author = {Vajda, Igor and Nedoma, Petr},
     title = {A comparison of three optimality criteria for observation channels},
     journal = {Kybernetika},
     pages = {174--186},
     year = {1973},
     volume = {9},
     number = {3},
     mrnumber = {0335164},
     zbl = {0274.94025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1973_9_3_a2/}
}
TY  - JOUR
AU  - Vajda, Igor
AU  - Nedoma, Petr
TI  - A comparison of three optimality criteria for observation channels
JO  - Kybernetika
PY  - 1973
SP  - 174
EP  - 186
VL  - 9
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_1973_9_3_a2/
LA  - en
ID  - KYB_1973_9_3_a2
ER  - 
%0 Journal Article
%A Vajda, Igor
%A Nedoma, Petr
%T A comparison of three optimality criteria for observation channels
%J Kybernetika
%D 1973
%P 174-186
%V 9
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_1973_9_3_a2/
%G en
%F KYB_1973_9_3_a2
Vajda, Igor; Nedoma, Petr. A comparison of three optimality criteria for observation channels. Kybernetika, Tome 9 (1973) no. 3, pp. 174-186. http://geodesic.mathdoc.fr/item/KYB_1973_9_3_a2/

[1] A. Perez: Sur la theorie de l'information dans le cas d'un alphabet abstrait. Trans. 1st Prague Conf. on Inf. Theory... . Publishing House of the Czechoslovak Acad. Sci., Prague 1957, 209-243. | MR | Zbl

[2] I. Vajda: Limit theorems for total variation of Cartesian product measures. Studia Sci. Math. Hungarica 6 (1971), 317-333. | MR

[3] T. Marill D. M. Green: On the effectiveness of receptors in recognition systems. IEEE Transaction on Information Theory IT-9 (1962), 11-17.

[4] T. L. Grettenberg: Signal selection in communication and radar systems. IEEE Transactions on Information Theory, IT-9 (1962), 265-275.

[5] T. Kailath: Comparison of the divergence and the Bhattacharya distance measure. Presented at the 4th Prague Conf. on Inf. Theory, Prague 1965.

[6] T. Nemetz: Information theory and the testing of a hypothesis. Proc. Coll. on Inf. Theory, Debrecen, Vol. II, Budapest 1969. | MR

[7] A. Perez: Some estimates of the probability of error in discriminating two stationary random processes. Presented at Conference on Inf. Theory in Dubna, USSR, 1969.

[8] M. E. Hellman J. Raviv: Probability of error, equivocation, and the Chernoff bound. IEEE Transactions on Information Theory IT-16 (1970), 368-372. | MR

[9] V. A. Volkonskij J. A. Rozanov: Some limit theorems for random functions I. Theory of Probability and Appl. (USSR, English transl.) 4 (1959), 178-197. | MR

[10] M. S. Pinsker: Информация и информационная устойчивость случайных величин и процессов. Москва 1960. | Zbl

[11] I. Csiszár: Information-type measures of difference of probability distributions and indirect observations. Studia Sci. Math. Hungarica 2 (1967), 299-318. | MR

[12] J. H. B. Kemperman: On the optimum rate of transmitting information. Ann. Math. Stat. 40 (1969), 2156-2177. | MR | Zbl

[13] I. Vajda: Note on discrimination information and variation. IEEE Transactions on Information theory IT-16 (1970), 771-773. | MR | Zbl

[14] S. Kullback: A lower bound for discrimination information in terms of variation. IEEE Transactions on Information theory IT-13 (1967), 126-127.