Minimum penalty estimate
Kybernetika, Tome 8 (1972) no. 5, pp. 367-383 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 62J05, 62J99, 93E10
@article{KYB_1972_8_5_a0,
     author = {Kovanic, Pavel},
     title = {Minimum penalty estimate},
     journal = {Kybernetika},
     pages = {367--383},
     year = {1972},
     volume = {8},
     number = {5},
     mrnumber = {0326947},
     zbl = {0246.62073},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1972_8_5_a0/}
}
TY  - JOUR
AU  - Kovanic, Pavel
TI  - Minimum penalty estimate
JO  - Kybernetika
PY  - 1972
SP  - 367
EP  - 383
VL  - 8
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_1972_8_5_a0/
LA  - en
ID  - KYB_1972_8_5_a0
ER  - 
%0 Journal Article
%A Kovanic, Pavel
%T Minimum penalty estimate
%J Kybernetika
%D 1972
%P 367-383
%V 8
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_1972_8_5_a0/
%G en
%F KYB_1972_8_5_a0
Kovanic, Pavel. Minimum penalty estimate. Kybernetika, Tome 8 (1972) no. 5, pp. 367-383. http://geodesic.mathdoc.fr/item/KYB_1972_8_5_a0/

[1] M. Blum: An extension of the minimum mean square prediction theory for sampled input signals. IRE Trans. IT-2 (1956), 176-184.

[2] P. Kovanic: Optimum digital operators. I.F.I.P. Congress 1968, Edinburgh, 5-10 Aug. 1968. | MR

[3] H. P. Deull P. L. Odell: A note concerning a generalization of the Gauss-Markov theorem. Texas Journal of Science 27, (1966), 1, 21-24.

[4] T. O. Lewis P. L. Odell: A generalization of the Gauss-Markov theorem. Amer. Stat. Ass. Journal (Dec. 1966), 1063-1066. | MR

[5] И. Д. Крутько: Статистическая динамика импульсных систем. (Statistical dynamics of impulse systems). Coветское радио, Москва 1963. | Zbl

[6] R. J. Hansen, Ch. L. Lawson: Extensions and Applications of the Householder Algoritmus for Solving Linear Least Squares Problems. Mathematics of Computation 23 (1969), 108, 787-812. | MR