@article{KYB_1972_8_3_a5,
author = {Van\v{e}\v{c}ek, Anton{\'\i}n and Fessl, Jarom{\'\i}r and \v{S}indel\'a\v{r}, Miroslav},
title = {Several approaches to pulse-width-modulated regulator synthesis via quasilinearization},
journal = {Kybernetika},
pages = {252--263},
year = {1972},
volume = {8},
number = {3},
zbl = {0234.49022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1972_8_3_a5/}
}
TY - JOUR AU - Vaněček, Antonín AU - Fessl, Jaromír AU - Šindelář, Miroslav TI - Several approaches to pulse-width-modulated regulator synthesis via quasilinearization JO - Kybernetika PY - 1972 SP - 252 EP - 263 VL - 8 IS - 3 UR - http://geodesic.mathdoc.fr/item/KYB_1972_8_3_a5/ LA - en ID - KYB_1972_8_3_a5 ER -
Vaněček, Antonín; Fessl, Jaromír; Šindelář, Miroslav. Several approaches to pulse-width-modulated regulator synthesis via quasilinearization. Kybernetika, Tome 8 (1972) no. 3, pp. 252-263. http://geodesic.mathdoc.fr/item/KYB_1972_8_3_a5/
[1] R. E. Bellman R. E. Kalaba: Quasilinearization and nonlinear boundary-value problems. Amer. Elsevier, N.Y. 1965. | MR
[2] O. A. Solheim F. Pøhner: Optimal control of a class of discrete systems. Preprints IFAC Congr., Warshaw, June 1969, Tech. session 62, 34-51.
[3] A. Vaněček: Convergence of quasilinear approximations of dynamical systems. (In Czech.) INORGA Institute for Automation Rep., Prague, June 1971.
[4] A. Vaněček J. Fessl: A contribution to parameters and state estimation and synthesis via quasilinearization. Preprints 2nd Prague IFAC Symp. Identification and Process Parameter Estimation, 15-20 June 1970. Sec. 2.6, 1-7. Academia, Prague 1970.
[5] A. Vaněček J. Fessl M. Šindelář: Optimization of digital control using pulse-width-modulation. (In Czech.) INORGA Institute for Automation Rep., Prague, Dec. 1970.
[6] P. Vidal: Systèmes échantillonnés non linéaires. Gordon & Breach (Dunod Ed.), Paris 1968. | MR
[7] C. H. Зyxoвицкий Л. И. Aвдeeвa: Линeйнoe и выпyклoe пpoгpaммиpoвaниe. Hayкa, Mocквa 1964.
[8] J. Žáčková: On maximizing a concave function subject to linear constraints by Newton's method. Aplikace matematiky 13 (1968), 4, 339-335. | MR | Zbl