Quasi-questionnaires, codes and Huffman's length
Kybernetika, Tome 6 (1970) no. 6, pp. 418-435 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 05.00, 94.10, 94A50, 94B99
@article{KYB_1970_6_6_a1,
     author = {Picard, C.-F.},
     title = {Quasi-questionnaires, codes and {Huffman's} length},
     journal = {Kybernetika},
     pages = {418--435},
     year = {1970},
     volume = {6},
     number = {6},
     mrnumber = {0284274},
     zbl = {0215.30901},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1970_6_6_a1/}
}
TY  - JOUR
AU  - Picard, C.-F.
TI  - Quasi-questionnaires, codes and Huffman's length
JO  - Kybernetika
PY  - 1970
SP  - 418
EP  - 435
VL  - 6
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_1970_6_6_a1/
LA  - en
ID  - KYB_1970_6_6_a1
ER  - 
%0 Journal Article
%A Picard, C.-F.
%T Quasi-questionnaires, codes and Huffman's length
%J Kybernetika
%D 1970
%P 418-435
%V 6
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_1970_6_6_a1/
%G en
%F KYB_1970_6_6_a1
Picard, C.-F. Quasi-questionnaires, codes and Huffman's length. Kybernetika, Tome 6 (1970) no. 6, pp. 418-435. http://geodesic.mathdoc.fr/item/KYB_1970_6_6_a1/

[1] R. Ash: Information Theory. Interscience Pub., New York 1965. | MR | Zbl

[2] Y. Cesari: Questionnaire, Codage et Tris. Publication de ľlnstitut Blaise Pascal, Paris 1968.

[3] F. Dubail: Algorithmes de questionnaires optimaux au sens de divers critères. Thèse Зème Cycle (Lyon) 1967.

[4] A. Feinstein: Foundations of information theory. Mc Graw Hill, New York 1958. | MR | Zbl

[5] D. A. Huffman: A method for the construction of minimum-redundancy codes. Proc. IRE (1952), 9, 1098. | Zbl

[6] F. Jelinek: Probabilistic Information Theory discrete and memoryless models. Mc Graw Hill, New York 1968. | Zbl

[7] C. F. Picard: Théorie des Questionnaires. Gauthier-Villars, Paris 1965. | MR | Zbl

[8] A. Renyi: Wahrscheinlichkeitsrechnung. VEB Deutscher Verlag der Wissenschaften, Berlin 1962. | MR | Zbl

[9] C. E. Shannon: The mathematical theory of communications. Bell System - Technical Journal (1948).