On the inversion of moving averages, linear discrete equalizers and "whitening" filters, and series summability
Kybernetika, Tome 6 (1970) no. 3, pp. 225-240 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 94.10
@article{KYB_1970_6_3_a4,
     author = {Prouza, Ludv{\'\i}k},
     title = {On the inversion of moving averages, linear discrete equalizers and "whitening" filters, and series summability},
     journal = {Kybernetika},
     pages = {225--240},
     year = {1970},
     volume = {6},
     number = {3},
     mrnumber = {0290855},
     zbl = {0201.21704},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1970_6_3_a4/}
}
TY  - JOUR
AU  - Prouza, Ludvík
TI  - On the inversion of moving averages, linear discrete equalizers and "whitening" filters, and series summability
JO  - Kybernetika
PY  - 1970
SP  - 225
EP  - 240
VL  - 6
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_1970_6_3_a4/
LA  - en
ID  - KYB_1970_6_3_a4
ER  - 
%0 Journal Article
%A Prouza, Ludvík
%T On the inversion of moving averages, linear discrete equalizers and "whitening" filters, and series summability
%J Kybernetika
%D 1970
%P 225-240
%V 6
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_1970_6_3_a4/
%G en
%F KYB_1970_6_3_a4
Prouza, Ludvík. On the inversion of moving averages, linear discrete equalizers and "whitening" filters, and series summability. Kybernetika, Tome 6 (1970) no. 3, pp. 225-240. http://geodesic.mathdoc.fr/item/KYB_1970_6_3_a4/

[1] Wold H.: On the Inversion of Moving Averages. Skand. Aktuarietidskr. (1938), 208-217. | Zbl

[2] Frisch R.: On the Inversion of a Moving Average. Skand. Aktuarietidskr. (1938), 218-225. | Zbl

[3] Nagabhushanam K.: The primary process of a smoothing relation. Ark. för Mat. (1951), 421-488. | MR | Zbl

[4] Di Toro M. J.: Communication in Time-Frequency Spread Media Using Adaptive Equalization. Proc. IEEE (1968), 1653-1679.

[5] Di Toro M. J.: Note on the Optimal Transversal Equalizer for a Dual Multipath Noiseless Channel. Proc. IEEE (1969), 809-810.

[6] Hill J. D.: Summability of sequences of 0's and 1's. Ann. of Math. (1945), 556-562. | MR | Zbl

[7] Lorentz G. G.: Borel and Banach properties of methods of summation. Duke Math. J. (1955), 129-141. | MR | Zbl

[8] Walsh J. L.: Interpolation and approximation by rational functions in the complex domain. (Russian translation). Inoizdat, Moscow 1961. | MR | Zbl

[9] Prouza L.: "Closed"-form formulas for the Kolmogorov - Wiener optimal prediction and filtration of stationary random sequences. (in Czech). Technika el. přístrojů (1965), 2, 45-46.

[10] Prouza L.: On the Smoothing of a Discrete Random Autoregressive Process. Kybernetika (1966), 5, 423-434.