@article{KYB_1970_6_3_a4,
author = {Prouza, Ludv{\'\i}k},
title = {On the inversion of moving averages, linear discrete equalizers and "whitening" filters, and series summability},
journal = {Kybernetika},
pages = {225--240},
year = {1970},
volume = {6},
number = {3},
mrnumber = {0290855},
zbl = {0201.21704},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1970_6_3_a4/}
}
Prouza, Ludvík. On the inversion of moving averages, linear discrete equalizers and "whitening" filters, and series summability. Kybernetika, Tome 6 (1970) no. 3, pp. 225-240. http://geodesic.mathdoc.fr/item/KYB_1970_6_3_a4/
[1] Wold H.: On the Inversion of Moving Averages. Skand. Aktuarietidskr. (1938), 208-217. | Zbl
[2] Frisch R.: On the Inversion of a Moving Average. Skand. Aktuarietidskr. (1938), 218-225. | Zbl
[3] Nagabhushanam K.: The primary process of a smoothing relation. Ark. för Mat. (1951), 421-488. | MR | Zbl
[4] Di Toro M. J.: Communication in Time-Frequency Spread Media Using Adaptive Equalization. Proc. IEEE (1968), 1653-1679.
[5] Di Toro M. J.: Note on the Optimal Transversal Equalizer for a Dual Multipath Noiseless Channel. Proc. IEEE (1969), 809-810.
[6] Hill J. D.: Summability of sequences of 0's and 1's. Ann. of Math. (1945), 556-562. | MR | Zbl
[7] Lorentz G. G.: Borel and Banach properties of methods of summation. Duke Math. J. (1955), 129-141. | MR | Zbl
[8] Walsh J. L.: Interpolation and approximation by rational functions in the complex domain. (Russian translation). Inoizdat, Moscow 1961. | MR | Zbl
[9] Prouza L.: "Closed"-form formulas for the Kolmogorov - Wiener optimal prediction and filtration of stationary random sequences. (in Czech). Technika el. přístrojů (1965), 2, 45-46.
[10] Prouza L.: On the Smoothing of a Discrete Random Autoregressive Process. Kybernetika (1966), 5, 423-434.