On the asymptotic rate of non-ergodic information sources
Kybernetika, Tome 6 (1970) no. 2, pp. 127-148 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 94.10, 94A15
@article{KYB_1970_6_2_a4,
     author = {Winkelbauer, Karel},
     title = {On the asymptotic rate of non-ergodic information sources},
     journal = {Kybernetika},
     pages = {127--148},
     year = {1970},
     volume = {6},
     number = {2},
     mrnumber = {0275979},
     zbl = {0245.94013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1970_6_2_a4/}
}
TY  - JOUR
AU  - Winkelbauer, Karel
TI  - On the asymptotic rate of non-ergodic information sources
JO  - Kybernetika
PY  - 1970
SP  - 127
EP  - 148
VL  - 6
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_1970_6_2_a4/
LA  - en
ID  - KYB_1970_6_2_a4
ER  - 
%0 Journal Article
%A Winkelbauer, Karel
%T On the asymptotic rate of non-ergodic information sources
%J Kybernetika
%D 1970
%P 127-148
%V 6
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_1970_6_2_a4/
%G en
%F KYB_1970_6_2_a4
Winkelbauer, Karel. On the asymptotic rate of non-ergodic information sources. Kybernetika, Tome 6 (1970) no. 2, pp. 127-148. http://geodesic.mathdoc.fr/item/KYB_1970_6_2_a4/

[1] P. R. Halmos: Measure theory. New York 1950. | MR | Zbl

[2] A. I. Khinchin: Mathematical foundations of information theory. Dover Publications, New York 1957. | MR | Zbl

[3] N. Kryloff N. Bogoliouboff: La théorie générale de la mesure dans son application à l'étude des systèmes dynamique de la mécanique non linéaire. Ann. of Math. 38 (1937), 65-113. | MR

[4] B. McMillan: The basic theorems of information theory. Ann. Math. Stat. 24 (1953), 196-219. | MR | Zbl

[5] J. C. Oxtoby: Ergodic sets. Bull. Amer. Math. Soc. 58 (1952), 116-136. | MR | Zbl

[6] K. R. Parthasarathy: On the integral representation of the rate of transmission of a stationary channel. Illinois Journ. of Math. 5 (1961), 2, 299-305. | MR | Zbl

[7] K. R. Parthasarathy: A note on McMillan's theorem for countable alphabets. Transact. Third Prague Conf. on Inform. Theory etc., Prague 1964, 541-543. | MR | Zbl

[8] K. R. Parthasarathy: Effective entropy rate and transmission of information through channels with additive random noise. Manuscript, 1962. | MR

[9] A. Perez: Notions généralizées d'incertitude, d'entropie et d'information. Transact. First Prague Conf. on Inform. Theory etc., Prague 1957, 183-208. | MR

[10] A. Perez: Sur la théorie de l'information dans le cas d'un alphabet abstrait. Transact. First Prague Conf. on Inform. Theory etc., Prague 1957, 209-243. | MR | Zbl

[11] A. Perez: Extensions of Shannon-McMillan's limit theorem to more general stochastic processes. Transact. Third Prague Conf. on Inform. Theory etc., Prague 1964, 545-574. | MR | Zbl

[12] V. A. Rohlin: New progress in the theory of transformation with invariant measure. (In Russian). Usp. matem. nauk 15 (1960), 3-26. | MR

[13] C. E. Shannon: A mathematical theory of communication. Bell System Tech. Journ. 27 (1948), Part I, 379-423. | MR | Zbl

[14] I. G. Sinal: On the flows with finite entropy. (In Russian). Dokl. Akad. Nauk 125 (1959), 6, 1200-1202. | MR

[15] K. Winkelbauer: On discrete information sources. Transact. Third Prague Conf. on Inform. Theory etc., Prague 1964, 765-830. | MR | Zbl

[16] K. Winkelbauer: Axiomatic definition of channel capacity and entropy rate. Transact. Fourth Prague Conf. on Inform. Theory etc., Prague 1967, 661-705. | MR

[17] K. Winkelbauer: Channels with finite past history. Transact. Second Prague Conf. on Inform. Theory etc., Prague 1960, 685-831. | MR | Zbl