Set-theoretical operations on $k$-multiple languages
Kybernetika, Tome 3 (1967) no. 4, pp. 315-320 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 68Q45
@article{KYB_1967_3_4_a0,
     author = {Kr\'al, Jaroslav},
     title = {Set-theoretical operations on $k$-multiple languages},
     journal = {Kybernetika},
     pages = {315--320},
     year = {1967},
     volume = {3},
     number = {4},
     zbl = {0155.01604},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1967_3_4_a0/}
}
TY  - JOUR
AU  - Král, Jaroslav
TI  - Set-theoretical operations on $k$-multiple languages
JO  - Kybernetika
PY  - 1967
SP  - 315
EP  - 320
VL  - 3
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_1967_3_4_a0/
LA  - en
ID  - KYB_1967_3_4_a0
ER  - 
%0 Journal Article
%A Král, Jaroslav
%T Set-theoretical operations on $k$-multiple languages
%J Kybernetika
%D 1967
%P 315-320
%V 3
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_1967_3_4_a0/
%G en
%F KYB_1967_3_4_a0
Král, Jaroslav. Set-theoretical operations on $k$-multiple languages. Kybernetika, Tome 3 (1967) no. 4, pp. 315-320. http://geodesic.mathdoc.fr/item/KYB_1967_3_4_a0/

[1] K. Čulík I. Havel: On multiple finite automata. (In print.)

[2] N. Chomsky: Chapters 1.1 -1.3 in Handbook of Math. Psychology. John Wiley 1963. | Zbl

[3] N. Chomsky M. P. Schützenberger: The algebraic theory of context-free languages. In Computer programming and Formal systems. North-Holland 1963. | MR

[4] K. Čulík: Some notes on finite state languages and events represented by finite automata using labelled graphs. Časopis pro pěstování matematiky 86 (1961), 1, 43 - 55. | MR

[5] S. Ginsburg J. S. Ullian: Ambiguity in contex free languages. J. of ACM 13 (1966), 1, 62-89. | MR

[6] B. H. Глyшкoв: Cинтeз цифpoвыx aвтoмaтoв. Физмaтгиз, Mocквa 1962.

[7] E. F. Moore: Gedankenexperimente on sequential machines. In Automata studies, Princeton 1956.

[8] C. C. Elgot J. E. Mezei: On relations defined by generalized automata. IBM J. of Res. and Develop 9 (1965), 1, 47-68. | MR