Geodesies with random curvature on Riemannian and pseudo-Riemannian manifolds
    
    
  
  
  
      
      
      
        
Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 24 (2003), pp. 99-106
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We introduce a notion of renewing geodesic whose curvature is a random
process. We demonstrate that the norm of Jacobi field along this geodesic
line is of exponential growth, and that there exist infinitely many conjugate
points with probability 1. Also we find the upper bound for the
average distance between conjugate points.
			
            
            
            
          
        
      @article{KUTGS_2003_24_a9,
     author = {V. G. Lamburt and \`E. R. Rozendorn and D. D. Sokolov and V. N. Tutubalin},
     title = {Geodesies with random curvature on {Riemannian} and {pseudo-Riemannian} manifolds},
     journal = {Trudy Geometricheskogo Seminara},
     pages = {99--106},
     publisher = {mathdoc},
     volume = {24},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/KUTGS_2003_24_a9/}
}
                      
                      
                    TY - JOUR AU - V. G. Lamburt AU - È. R. Rozendorn AU - D. D. Sokolov AU - V. N. Tutubalin TI - Geodesies with random curvature on Riemannian and pseudo-Riemannian manifolds JO - Trudy Geometricheskogo Seminara PY - 2003 SP - 99 EP - 106 VL - 24 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KUTGS_2003_24_a9/ LA - ru ID - KUTGS_2003_24_a9 ER -
%0 Journal Article %A V. G. Lamburt %A È. R. Rozendorn %A D. D. Sokolov %A V. N. Tutubalin %T Geodesies with random curvature on Riemannian and pseudo-Riemannian manifolds %J Trudy Geometricheskogo Seminara %D 2003 %P 99-106 %V 24 %I mathdoc %U http://geodesic.mathdoc.fr/item/KUTGS_2003_24_a9/ %G ru %F KUTGS_2003_24_a9
V. G. Lamburt; È. R. Rozendorn; D. D. Sokolov; V. N. Tutubalin. Geodesies with random curvature on Riemannian and pseudo-Riemannian manifolds. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 24 (2003), pp. 99-106. http://geodesic.mathdoc.fr/item/KUTGS_2003_24_a9/
