Geodesies with random curvature on Riemannian and pseudo-Riemannian manifolds
Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 24 (2003), pp. 99-106

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a notion of renewing geodesic whose curvature is a random process. We demonstrate that the norm of Jacobi field along this geodesic line is of exponential growth, and that there exist infinitely many conjugate points with probability 1. Also we find the upper bound for the average distance between conjugate points.
@article{KUTGS_2003_24_a9,
     author = {V. G. Lamburt and \`E. R. Rozendorn and D. D. Sokolov and V. N. Tutubalin},
     title = {Geodesies with random curvature on {Riemannian} and {pseudo-Riemannian} manifolds},
     journal = {Trudy Geometricheskogo Seminara},
     pages = {99--106},
     publisher = {mathdoc},
     volume = {24},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/KUTGS_2003_24_a9/}
}
TY  - JOUR
AU  - V. G. Lamburt
AU  - È. R. Rozendorn
AU  - D. D. Sokolov
AU  - V. N. Tutubalin
TI  - Geodesies with random curvature on Riemannian and pseudo-Riemannian manifolds
JO  - Trudy Geometricheskogo Seminara
PY  - 2003
SP  - 99
EP  - 106
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KUTGS_2003_24_a9/
LA  - ru
ID  - KUTGS_2003_24_a9
ER  - 
%0 Journal Article
%A V. G. Lamburt
%A È. R. Rozendorn
%A D. D. Sokolov
%A V. N. Tutubalin
%T Geodesies with random curvature on Riemannian and pseudo-Riemannian manifolds
%J Trudy Geometricheskogo Seminara
%D 2003
%P 99-106
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KUTGS_2003_24_a9/
%G ru
%F KUTGS_2003_24_a9
V. G. Lamburt; È. R. Rozendorn; D. D. Sokolov; V. N. Tutubalin. Geodesies with random curvature on Riemannian and pseudo-Riemannian manifolds. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 24 (2003), pp. 99-106. http://geodesic.mathdoc.fr/item/KUTGS_2003_24_a9/