On the flow prolongation of vector fields
Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 24 (2003), pp. 69-80
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $F$ be a fiber product preserving bundle functor of the base order $r$ on the category $\mathcal{FM}_m$ and $\eta$ a projectable vector field on $Y\to M$ over a vector field $\xi$ on $M,m=\dim M$. We construct a natural map transforming $F\eta$ and $j^r\xi$ into the flow prolongation of $\eta$ and deduce its basic properties. Our main tool is a similar construction in the case of products of two manifolds and of product vector fields.
@article{KUTGS_2003_24_a7,
     author = {I. Kolar},
     title = {On the flow prolongation of vector fields},
     journal = {Trudy Geometricheskogo Seminara},
     pages = {69--80},
     year = {2003},
     volume = {24},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/KUTGS_2003_24_a7/}
}
TY  - JOUR
AU  - I. Kolar
TI  - On the flow prolongation of vector fields
JO  - Trudy Geometricheskogo Seminara
PY  - 2003
SP  - 69
EP  - 80
VL  - 24
UR  - http://geodesic.mathdoc.fr/item/KUTGS_2003_24_a7/
LA  - ru
ID  - KUTGS_2003_24_a7
ER  - 
%0 Journal Article
%A I. Kolar
%T On the flow prolongation of vector fields
%J Trudy Geometricheskogo Seminara
%D 2003
%P 69-80
%V 24
%U http://geodesic.mathdoc.fr/item/KUTGS_2003_24_a7/
%G ru
%F KUTGS_2003_24_a7
I. Kolar. On the flow prolongation of vector fields. Trudy Geometricheskogo Seminara, Trudy Geometricheskogo Seminara, Tome 24 (2003), pp. 69-80. http://geodesic.mathdoc.fr/item/KUTGS_2003_24_a7/